File No. 11014/07/2021-QA

Food Safety and Standards Authority of India

(A statutory Authority established under the Food Safety and Standards Act, 2006) (Quality Assurance Division)

FDA Bhawan, Kotla Road, New Delhi - 110002

Dated, the 17th July, 2023

<u>Order</u>

Subject: FSSAI Manual of Methods of Analysis of Foods - Fish and Fish Products - reg.

The FSSAI Manual of Methods of Analysis of Foods-Fish and Fish Products which has been approved by the Food Authority in its 42nd meeting held on 30.05.2023 is enclosed herewith.

- 2. This manual shall be used by the laboratories with immediate effect. It supersedes the test Methods for Fish and Fish Products specified under the Manual of Methods of Analysis of Foods-Meat and Meat Products & Fish and Fish Products issued vide Office Order No. 1-90/FSSAI/SP (MS&A)/2009 dated 09.01.2017.
- 3. Since the process of updation of test methods is dynamic, any changes happening from time to time will be notified separately. Queries/concerns, if any, may be forwarded to email: sp-sampling@fssai.gov.in, dinesh.k@fssai.gov.in.

Encl: as above

Dr. SATYEN Digitally signed by Dr. SATYEN KUMAR PANDA Date: 2023.07.17 15:57:41 +05'30'

(Dr. Satyen Kumar Panda) Advisor (QA)

To:

- 1. All FSSAI Notified Laboratories
- 2. All State Food Testing Laboratories
- 3. CEO, National Accreditation Board for Testing and Calibration Laboratories (NABL)

फा. सं. 11014/07/2021 - क्यूए भारतीय खाद्य सुरक्षा और मानक प्राधिकरण

(खाद्य सुरक्षा और मानक अधिनियम, 2006 के अंतर्गत स्थापित एक वैधानिक प्राधिकरण) (गुणवत्ता आश्वासन विभाग)

एफडीए भवन, कोटला रोड, नई दिलली-110002

दिनांक: 17 जुलाई, 2023

आदेश

विषय: खाद्य पदार्थों के विश्लेषण के तरीकों की एफएसएसएआई मैनुअल – मछली और मछली उत्पाद- के संबंध में।

खाद्य पदार्थों के विश्लेषण के तरीकों की एफएसएसएआई मैनुअल - मछली और मछली उत्पाद, जिसे खाद्य प्राधिकरण ने 30.05.2023 को आयोजित अपनी 42वीं बैठक में अनुमोदित किया है, इसके साथ संलग्न है।

- इस मैनुअल का प्रयोग प्रयोगशालाओं द्वारा तत्काल प्रभाव से किया जाएगा। यह मैनुअल कार्यालय आदेश संख्या 1-90/FSSAI/SP(MS&A)/2009 दिनांक 09.01.2017 द्वारा जारी, एफएसएसएआई मैन्अल- मांस और मांस उत्पाद और मछली और मछली उत्पाद में उल्लिखित मछली और मछली उत्पाद के विश्लेषण के तरीकों का स्थान लेता है।
- चूंकि परीक्षण विधियों के अद्यतन की प्रक्रिया गत्यात्मक है, समय-समय पर होने वाले किसी भी परिवर्तन को अलग से अधिसूचित किया जाएगा। प्रश्न/चिंताएं, यदि कोई हों, ईमेल: spsampling@fssai.gov.in, dinesh.k@fssai.gov.in पर अग्रेषित की जा सकती हैं ।

संलग्नक: उपरोक्त अनुसार

Dr. SATYEN Digitally signed by Dr. SATYEN **KUMAR** PANDA

Date: 2023.07.17 15:58:30 +05'30'

(डॉ. सत्येन कुमार पंडा) सलाहकार (गुणवत्ता आश्वासन)

प्रति

- 1. सभी एफएसएसएआई अधिसूचित प्रयोगशालाएं
- 2. सभी राज्य खाद्य परीक्षण प्रयोगशालाएं
- 3. सीईओ, राष्ट्रीय परीक्षण और अंशशोधन प्रयोगशाला प्रत्यायन बोर्ड

JUNE 2023

जी. कमलावर्धन राव, आई.ए.एस G. Kamala Vardhana Rao, IAS सचिव (भारत सरकार) एवं मुख्य कार्यकारी अधिकारी Secretary(GOI) & Chief Executive Officer

FOREWORD

We are delighted to present the FSSAI Manual of Methods of Analysis of Foods-Fish & Fish Products, a comprehensive guide that serves as an invaluable resource for food testing laboratories, researchers & quality control professionals, food technologists, and anyone involved in the analysis of Fish & Fish products.

This manual has been meticulously crafted to offer a wide range of analytical methods specifically tailored for Fish & Fish products. It encompasses various aspects of analysis as per FSSR. In an ever-evolving scientific landscape, it is essential to stay abreast of emerging technologies and methodologies. Therefore, we encourage users of this manual to actively contribute their experiences and expertise. By fostering a collaborative environment, we can continuously refine and expand our understanding of Fish & Fish Products, driving innovation and improvement in the field.

It gives us immense pleasure to release this FSSAI Manual of Methods of Analysis of Foods- Fish & Fish Products. The FSSAI laboratories shall use these testing methods only for analyzing samples under the Food Safety and Standards Act, 2006 and Food Safety and Standards Regulations, 2011. This Manual may serve as a catalyst for scientific advancements, quality assurance, and consumer safety, ultimately contributing to the overall well-being and satisfaction of individuals worldwide.

June 2023

Shri G. Kamala Vardhana Rao, Chief Executive Officer, Food Safety and Standards Authority of India,

FDA Bhawan, Kotla Road, New Delhi - 110002

एफडीए भवन, कोटला भवन, नई दिल्ली - 110002, दुरभाष - 011-233220995/ 996 FDA Bhawan, Kotla Road, New Delhi - 110002, Tel- 011-23220995/996 E-mail: ceo@fssai.gov.in, www.fssai.gov.in

डॉ. सत्येन कुमार पंडा, एआरएस Dr. Satyen Kumar Panda, ARS Advisor

PREFACE

Food safety is assurance that food is acceptable for human consumption according to its intended use. Testing of food to instil confidence amongst consumers that food is safe to eat is important part of the food safety ecosystem. Food testing ecosystem is complex in India and challenges start from sample preparation to final result generation.

Each method in the FSSAI Manual of Methods of Analysis of Foods- Fish & Fish Products has been carefully selected based on its scientific rigor, applicability, and relevance to the food testing laboratories, QA/QC Professionals of industry. The procedures are meticulously detailed, providing step-by-step instructions, necessary reagents, and equipment requirements.

We express our sincere gratitude to the numerous experts who have contributed their knowledge, expertise, and insights to the development of this manual especially Dr. Ravi Shankar C.N., Vice-Chancellor, ICAR-CIFE, Mumbai (former Director ICAR-CIFT) for valuable insight. I am thankful to the Chairperson, FSSAI and CEO, FSSAI for their support and constant encouragement without which the work would not have seen the light of day.

Any suggestions/feedback from the stakeholders, which will contribute towards updating the manual from time to time are welcome.

June 2023

Dr. Satyen Kumar Panda Advisor (QA), Food Safety and Standards Authority of India, FDA Bhawan, Kotla Road, New Delhi - 110002

एफडीए भवन, कोटला भवन, नई दिल्ली - 110002, दूरभाष-011-23217833 FDA Bhawan, Kotla Road, New Delhi - 110002, Tel - 011-23217833 E-mail: advisor.qa@fssai.gov.in, www.fssai.gov.in

LIST OF CONTRIBUTORS

Name	Organization	
Dr. Satyen Kumar Panda	Advisor (QA), FSSAI	
Dr. Niladri Shekhar Chatterjee	Senior Scientist, ICAR-CIFT, Kochi	
Dr. Pankaj Kishore	Senior Scientist, ICAR-CIFT, Kochi	
Dr. Ranjit K. Nadella	Scientist, ICAR-CIFT, Kochi	
Dr. Rajan Sharma	Principal Scientist, Dairy Chemistry Division, ICAR-National Dairy Research Institute, Karnal	
Dr. Lalitha Ramakrishna Gowda	Retd. Chief Scientist , CSIR-Central Food Technological Research Institute (CFTRI), Mysuru	
Ms. Sweety Behera	Director (QA), FSSAI	
Mr. Balasubramanian. K	Joint Director (QA), FSSAI	
Dr. Dinesh Kumar	Assistant Director (Technical), QA, FSSAI	
Ms. Priyanka Meena	Technical Officer, QA, FSSAI	
Ms. Gurpreet Kaur	Technical Officer, QA, FSSAI	

TABLE OF CONTENTS

S.No.	Method No.	Title/ Method	
1.	FSSAI 06.001:2023	Determination of Foreign Matter -I (Filth)	9-12
2.	FSSAI 06.002:2023	Determination of Foreign Matter -II (Parasites)	13
3.	FSSAI 06.003:2023	Determination of Foreign Matter -III (Shellbits)	14
4.	FSSAI 06.004:2023	Determination of Bloom Strength of Gelatin from Fish Processing Waste	15-16
5.	FSSAI 06.005:2023	Determination of Acidity of Brine in Canned Fish Products	17-18
6.	FSSAI 06.006:2023	Determination of Drained Weight in Canned Fish Products	19
7.	FSSAI 06.007:2023	Determination of Percentage of Water in Drained Liquid in Canned Fish Products	20
8.	FSSAI 06.008:2023	Determination of Vacuum in Cans in Canned Fish Products	21
9.	FSSAI 06.009:2023	Determination of Residual Air in Retortable Pouch for Ready to Eat Finfish or Shellfish Curry	22-23
10.	FSSAI 06.010:2023	Determination of Bond Strength of Retortable Pouches	
11.	FSSAI 06.011:2023	Determination of Seal strength of Retortable Pouches	
12.	FSSAI 06.012:2023	Determination of Tensile Strength of Retortable Pouches	
13.	FSSAI 06.013:2023	23 Determination of Acidity in Fish Pickle	
14.	FSSAI 06.014:2023	Determination of Fluid Portion in Fish Pickle	36
15.	FSSAI 06.015:2023	Determination of Alpha Amino Nitrogen in Fish Sauce	
16.	FSSAI 06.016:2023	Determination of Total Nitrogen Content in Fish Sauce	
17.	FSSAI 06.017:2023	Determination of Water Activity in Edible Fish Powder	
18.	FSSAI 06.018:2023 Determination of Acid Insoluble Ash in Salted Fish/Dried fish & Edible Fish Powder		44-45

19.	FSSAI 06.019:2023	Determination of Ash Content in Edible Fish Powder		
20.	FSSAI 06.020:2023	Determination of Crude Fat in Edible Fish Powder	47-48	
21.	FSSAI 06.021:2023	Determination of Crude Protein Content in Edible Fish Powder	49-51	
22.	FSSAI 06.022:2023	Determination of Total Available Lysine In Edible Fish Powder	52-53	
23.	FSSAI 06.023:2023	Determination of Protein Digestibility Corrected Amino Acid Score (PDCAAS) in Edible Fish Powder: Part 1 Data requirement and calculations	54-56	
24.	FSSAI 06.024:2023	Determination of Protein Digestibility Corrected Amino Acid Score (PDCAAS) in Edible Fish Powder: Part 2. Amino Acid Analysis	57-61	
25.	FSSAI 06.025:2023	Determination of Protein Digestibility Corrected Amino Acid Score (PDCAAS) in Edible Fish Powder: Part 3. In Vitro Protein Digestibility	62-64	
26.	FSSAI 06.026:2023	Determination of pH in Fish and Fish Products	65-66	
27.	FSSAI 06.027:2023	Determination of Moisture content in Fish & Fish Products	67	
28.	FSSAI 06.028:2023	Determination of Salt Content in Fish & Fish Products	68-69	
29.	FSSAI 06.029:2023	Determination of Histamine in Fish & Fish Products		
30.	FSSAI 06.030:2023	Determination of free formaldehyde in fish	74-76	
31.	FSSAI 06.031:2023	Determination of Paralytic Shellfish Poison (PSP) in Molluscs	77-80	
32.	FSSAI 06.032:2023	Determination of Okadaic Acid (DSP) and Azaspiracid (AZP) in Molluscs	81-86	
33.	FSSAI 06.033:2023	Determination of Domoic Acid in Molluscs	87-88	
34.	FSSAI 06.034:2023	Determination of Brevetoxins (BTX) in Molluscs	89-91	
35.	FSSAI 06.035:2023	Determination of Poly Aromatic Hydrocarbons (PAHs) in Fish & Fish Products		
36.	FSSAI 06.036:2023	Determination of Poly Chlorinated Biphenyls (PCBs) in Fish & Fish Products		
37.	FSSAI 06.037:2023	Determination of Methyl Mercury in Fish & Fish Products	100-104	
		ANNEXURE I	105	

Note: Test methods given in the manual are standardized/validated/taken from national or international methods or recognized specifications, however it would be the responsibility of the respective testing laboratories to verify the performance of these methods onsite and ensure it gives proper results before putting these methods in to use.

Upvendence Determine Land Control of State		mination of Foreign Matter- I (Filth)	
Method No.	FSSAI 06.001:2023	Revision No. & Date	0.0
Scope	This method is applicable to:		ble pouches
	• Surimi		
Caution	 In preparation of the trap flask, rod of greater length is not desirable because it gives greater displacement of liquid. Isopropanol used should not be cloudy. IPA is acceptable only if 40% mixture with water is clear. In the isolation part, if large number of suspended solids is present, the mixture in the percolator should stand longer to permit separation of oil. During extraction, if filtering action slows, use new filter paper. 		
Principle			ributed by animater, or any other ions. The product and ammalian hair filter parated from nor aqueous mixture. O
Apparatus/		lask (2L): Consists of 2L Erlen	-
Instruments	inserted close fitt stiff metal rod 5 n flask.	ing rubber stopper or wafer stop nm diameter and 10 cm longer th g bar and stirrer hot plate: Tel	pper supported on han the height of th
	continuosly varia 3) Glass Rod (Stirri	nm od; use with hot plate h ble heat and speed controls. ng rod): 370 × 10 mm diamete ng of sample in drain opening.	
	4) Beakers 5) Percolator (2L):	conforming to the general size g, 90 mm id at 200 mm down fro	
		smooth, high wet- strength, rap cohol-, and water proof lines 5m	
	8) Wet sieve 9) Rubber Policema 10) Widefield Stereo 11) Water bath	-	
Materials and Reagents	1) Mineral Oil 2) Tergitol		

	3) Igepal® 710
	4) Igepal® 730
	5) Flotation liquid
	6) Heptane – Commercial n-heptane containing <8% toluene.
	7) Isopropanol (IPA)- technical or histological grade acceptable
	8) Detergent solution – 1% or 5% in water
	9) Hydrochloric acid (HCl) (12M)
	10) Tap water
	11) Deionized water
Preparation of	1) Detergent - dissolve 'x' grams of detergent in 100ml of water, to
Reagents	obtain x% of detergent as per requirement.
0	2) Mineral Oil - paraffin oil, white, light, 125/135 Saybolt universal
	viscosity, specific gravity 0.840-0.860
	3) Tergitol-
	i) Niaproof 4 – CAS 139-88-8
	ii) Triton X-114 Octylphenol ethoxylate
	4) Igepal® 710- Nonyl Phenol 10.5 mole ethoxylate
	5) Igepal® 730 - Nonyl Phenol 15 mole ethoxylate
	6) Flotation liquid- Mineral Oil and heptane (85+15)
	7) Heptane – Commercial n-heptane containing <8% toluene.
1 1 5	8) Isopropanol (IPA)- technical or histological grade acceptable
ample Preparation	1) Canned Crab:
	 Transfer the entire contents of ≤ 200g can to 2L trap flask.
	Thoroughly wash can (and parchment if present) with tap water are
	transfer the washings to a flask.
	• Add approximately 800ml hot (55° - 70°C) tap water.
	With magnetic stirring, heat to boiling point.
	Add 50ml mineral oil, and stir magnetically for 3 mins while continuing
	to boil.
	Remove flask from heat, fill with hot tap water, and let stand for 30 min
	stirring gently by hand at 10 and 20 mins
	2) Fish and Fish products:
	• For 225g of test sample, transfer entire contents of can to 1.5 L of beak
	and break up the lumps with spatula. Wash can thoroughly with sma
	amount of isopropanol and add washings to beaker.
	Add 50ml of HCl and water to make 800ml. With magnetic stirring, he to hailing point and hail for 20 min (if product forms, add water).
	to boiling point and boil for 29 min (if product foams, add wat
	occasionally). Add 50ml mineral oil and stir magnetically for 5 min ar
	continue boiling.
	3) Fish products containing spice, Fish paste and Sauce:
	Weigh 100g test portion into 2L beaker.
	• Add 800ml 5% HCl (40ml HCl+ 760ml water) and 15 ml Igepal (5r
	Igepal 710 and 10 ml Igepal 730)
	Cover beaker with watch glass and bring contents to full boil, stirring or contents to full boil.
	magnetic stirrer.
	Remove watch glass and boil gently with magnetic stirring on stirre
	hot plate for 60-90 min or until homogenous slurry is obtained (Not
	do not let product boil over during digestion procedure)

4) Canned Shrimp:

- For shrimp < 2.5cm long, place the entire contents of the can into a 2L beaker containing magnetic stirring bar.
- For larger shrimp, skewer on probe and wash each shrimp with hot (55°-70°C) water from squeeze bottle over 2L beaker containing the stirring bar
- Discard the shrimp, wash can thoroughly, pouring washings into
- Bring water level in beaker to 925ml with hot tap water.

Method of analysis

Isolation:

1) Filth in canned Crab, canned shrimp and Fish & Fish products

- Transfer to the percolator which has its rubber hose fitting clamped shut as close to tubulation opening as possible and containing 200-250 ml hot tap water. Reserve beaker.
- Let stand for 3 mins and drain contents to 3 cm of bottom of the oil layer (. Repeat drain and refill steps at 3 mins interval until aqueous phase appears clear.
- Finally, slowly drain percolator to minimum volume of aqueous phase without loss of oil phase.
- Drain oil layer into reserved beaker. Filter through ruled paper.
- Wash percolator with warm water, 1-5% detergent solution, water and isopropanol in sequence, and collect washings in beaker.
- Filter onto ruled filter paper and examine microscopically.

2) Filth in Fish products containing spice, Fish paste and Fish sauce

- Transfer slurry portion wise onto No. 230 plain weave sieve and wet sieve, with forceful stream of hot tap water (55°-70°C) from aerator until rinse is clear. Use rubber policeman or spatula to remove residue adhering to sides of beaker. Add 10 ml tergitol anionic 7 (or 25 ml of tergitol, for fish products containing spice), if substantial residue remains on the sieve and let stand for 2-3min. (note: soaking residue in tergitol on sieve for 2-3mins aids in dispersion of clumps). Repeat tergitol procedure twice.
- Wet residue on sieve with 40% isopropanol and quantitatively transfer residue to 2 L Wildman trap flask, using 40% isopropanol. (Note: insert No. 10 rubber stopper into flask neck. If stopper extends 1.5-2.0 cm into neck, flask has proper neck diameter, if <1.5cm, flask may allow spillage during trapping procedure).
- Dilute to 800 ml with 40% isopropanol and boil gently for 10mins with magnetic stirring.
- Remove from heat, add 50ml of mineral oil and stir magnetically for
- Fill flask with 40% IPA and let stand for 30mins with intermittent stirring.
- Spin wafer disc or stopper to remove sediment and trap off, rinsing neck of flask with 40% IPA.
- Add 35ml mineral oil (50 ml of flotation liquid, in case of fish products with spice).

	 Hand stir sediment with gentle rotary motion. Fill flask with 40% IPA, let stand 20 mins, and trap off as before, rinsing neck with IPA. Filter onto ruled paper and examine at 30× with stereoscopic microscope. 	
Calculation with units		
of expression	Examination under microscope	
Reference	[1] JAOAC, 976.27 (16.9.04)	
	[2] JAOAC, 972.38 (16.9.06)	
	[3] JAOAC, 992.10 (16.9.07)	
	[4] JAOAC, 991.37 (16.9.08)	
	[5] JAOAC, 974.32 (16.9.09)	
Approved by	Scientific Panel on Methods of Sampling and Analysis	

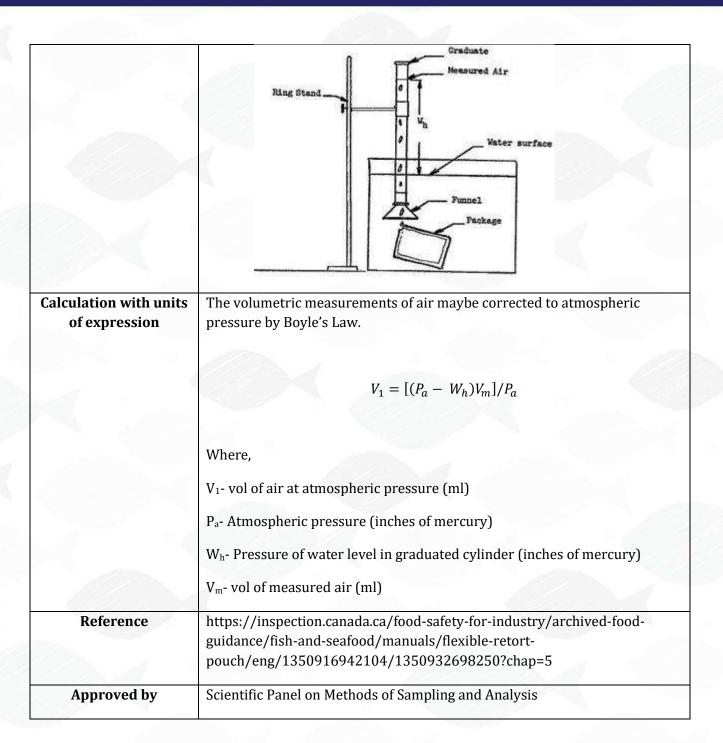
प्रभावस्य प्रमुख्ये स्वर्धाः वर्षेत्रस्य क्ष्मान्यः स्वर्धाः स्वर्धाः स्वर्धाः स्वर्धाः स्वर्धः स्वरं	Determination of Foreign Matter- II (Parasites)		
Method No.	FSSAI 06.002:2023	Revision No. & Date	0.0
Scope	 This method is applicable to: Quick frozen fish sticks (fish fingers) and fish portions- breaded or in batter. Ready -to -eat finfish or shellfish curry in retortable pouches. 		
Caution	 The working surface should have a transparency of 45-60%. Overhead illumination (indirect light) in vicinity of candling table should be ≥500 lux. 		
Principle	This study determines optimum conditions for detecting parasites in skinned fish fillets by using candling tables under commercial conditions. The best balance of factors was sought for obtaining maximum lighting conditions, reducing operator fatigue, retaining natural fillet color, and having a high contrast between parasites and fish flesh.		
Apparatus/ Instruments	 Candling table: Rigid framework to hold light source below rigid working surface of white, translucent acrylic plastic or other suitable material. Length and width of working surface should be large enough to examine entire test filter, e.g., 30×60 cm sheet, 5-6 mm thick. Light source: "Cool white" with color temperature of 4200° K. At least two 20 W fluorescent tubes are recommended. Tubes and their electrical connections should be constructed to prevent overheating of light source. Average light intensity above working surface should be 1500-1800 lux as measured 30 cm above centre of the acrylic sheet. Distribution of illumination should be in a ratio of 3:1:0.1, i.e., brightness directly above light source should be three times greater than that of outer field and brightness of outer limit of visual field should be not more than 0.1 that of 		
Materials and	inner field.		
Reagents Preparation of Reagents			
Sample Preparation	 Test fish samples are to be skinned and cut into thick fillet pieces. Under commercial conditions, large fishes are eviscerated as soon as possible (preferably at sea), well iced during transport, and filleted as soon as practical to reduce the potential for parasites migrating from the intestinal tract into the edible flesh. 		
Method of analysis	 Place skinned fish fillets in single layer on a lighted working surface. Examine visually for parasites. 		
Calculation with units of expression			
Reference	JAOAC, 985.12 (35.1.38		
Approved by	Scientific Panel on Methods of Sampling and Analysis		

अरहारीय साथ मुख्या और तरहर व्याधिकार केवल क्षेत्रकों करते का मुख्या और तरहर व्याधिकार स्थापन और परिचार पान्यामा मातिया Manay of Mahan and Farry Westay	Determination of Foreign Matter- III (Shell bits)		
Method No.	FSSAI 06.003:2023	Revision No. & Date	0.0
Scope	This method is applicabl	e to:	
	 Canned fishery produ 		
	 Ready -to -eat finfish 	or shellfish curry in retortable p	ouches.
	 Frozen clam meat. Fresh and quick-frozen raw scallop products. 		
	 Pasteurized crab mea 		
Caution		alkaline condition, and filtered	with sieve to isolate
		bits are washed on a pre-weigh	
	_	as shell bits is expressed as cour	ıt per Kg sample as
	well as weight per Kg of		1 1 1
Principle	_	shell bits containing filter pape	=
A		nt has less than 10% relative sta	ndard deviation.
Apparatus/	1) Beakers (500 ml)		
Instruments	2) Pipettes		
	3) Heater		
	4) No. 12 Sieve		
	5) No. 60 Sieve		
	6) Weighing balance		
	7) Hot air oven		
Materials and	8) Magnetic Stirrer	o (NaOII), 1 F0/	
	 Sodium Hydroxide (NaOH): 1.5% Alizarin Red S (aq): 1% 		
Reagents	3) Deionized water	J. 1 <i>7</i> 0	
Droporation of		o (NaOH) (1 E0/), Add 1 Eg of Na	OU in 100ml of
Preparation of	1) Sodium Hydroxide (NaOH) (1.5%): Add 1.5g of NaOH in 100ml of		
Reagents	deionized water. 2) Alizarin Red S (aq) (1%): Add 1g of Alizarin Red S indicator in 100		indicator in 100ml
			illulcator ili 100illi
Sample Preparation	of deionized water. The test samples are to be drained of any liquids before analysis.		ro analysis
Sample Freparation	The test samples are	to be drained of any fiquids belof	e allalysis.
Method of analysis	1) Weigh 57g of repr	resentative test sample into 400r	ml heaker (600ml
riction of unaryons		% of NaOH solution and stir to bi	
		% aqueous Alizarin Red S indica	
		while stirring, 3 or 4 times at 80	°C for 10 mins until
	the meat is digest		1 1
	5) Pour on No. 12 si water.	eve nested in No. 60 sieve and w	ash with deionized
		ooth sieves onto a pre weighed pa	ner dry at 100°C in
		l cool to room temperature.	ipoi, ary at 100 G III
	7) Weigh and count	shell.	
Calculation with		ed as number of pieces and weig	ht/Kg.
units of expression			
Reference	AOAC 945.75		
ACICI CIICE			

Determination of Bloom Strength of Gelatin from Fish P Waste Waste		m Fish Processing	
Method No.	FSSAI 06.004:2023	Revision No. & Date	0.0
Scope	This method is applicable to Gelatin from fish processing waste as specified in Food Safety and Standards (Food Products Standards and Food Additives Regulations, 2011.		
Caution	Check shot hopper on bl	oom gelometer to assure it is	grounded electrically
Principle	The test determines the weight in grams needed by a specified plunger (normally with a diameter of 0.5 inch) to depress the surface of the gel by 4 mm without breaking it at a specified temperature. The number of grams is called the Bloom value, and most gelatins are between 30 and 300 g Bloom. The higher a Bloom value, the higher the melting and gelling points of a gel, and the shorter its gelling times. This method is most often used on soft gels. To perform the Bloom test on gelatin, a 6.67% gelatin solution is kept for 17-		
Apparatus/	18 hours at 10 °C prior t 1) Pipettes	o being tested.	
Instruments	Trim to size	7/16" Plunger 1/2" Lu	1] OR tap 3/8" deep
Materials and Reagents	Fig	-	
Preparation of Reagents			
Sample Preparation		-	
Method of analysis	Pipet 105 ml wa test portion, and	ter at 10°-15°C into standard b	ploom bottle, add 7.5

	• Let stand 1 hour and then bring to 62 °C in 15 min by placing in water bath regulated at 65°C (test solution may be swirled several times to aid solution).	
	• Finally mix by inversion, let stand 15 min and place in water bath at 10° ± 0.1°C, chill 17 hrs.	
	 Determine jelly strength in Bloom Gelometer, adjusted for 4 mm depression and to deliver 200 ± 5g shot/5s, using 0.5 in. (12.7 mm) plunger and light weight shot receiver (paper or plastic). 	
Calculation with	Bloom strength/ Bloom Value = Weight in grams, 'g' required by the plunger	
units of expression	to depress the surface of the gel by 4mm.	
Reference	JAOAC 948.21 , (38.1.03)	
Approved by	Scientific Panel on Methods of Sampling and Analysis	

एफएसएसएआइ प्रश्नाय का प्रश्ना की त्यार वरिष्यम कार्या के प्रश्ना की त्यार वरिष्यम कार्या की प्रश्ना की त्यार वरिष्यम कार्या की प्रश्ना की त्यार वरिष्य का कार्या की प्रश्ना की त्यार वरिष्य कार्या की प्रश्ना कर्मना क्षेत्रात्व किराम की प्रश्नाम क्षार्थम क्षार्यम	Determination of Acidity of Brine in Canned Fish Products		
Method No.	FSSAI 06.005:2023	Revision No. & Date	0.0
Scope	This method is applicable to Canned Fish Products as specified in Food Safety and Standards (Food Products Standards and Food Additives) Regulations, 2011.		
Caution	 The strength of the 0.1 N Sodium Hydroxide (NaOH) should be confirmed by titrating against a primary standard (for example Oxalic acid) or it should be freshly prepared before analysis. The titration end point should be carefully noted when only a faint pink colour appears and is stable for 15 s. Dark pink colour indicates over titration. Phenolphthalein indicator solution should be prepared fresh before titration. Calibrated pipettes and burettes should be used. 		
Principle	Acidity in the brine is determined in terms of % citric acid content by titration with 0.1 N NaOH, where 1 ml of 0.1NNaOH solution is equivalent to 0.0064g of citric acid. The change in pH is monitored by phenolphthalein indicator that turns slightly pink in basic solution.		
Apparatus/	1) Standard flasks	(200ml) - for preparation of s	tandard 0.1 N NaOH
Instruments	 Erlenmeyer flasks (500ml) – to carry out the titrimetric analysis. Pipettes – to transfer the sample/ analyte. Burette (100ml)- to be filled with the titrant (0.1 N of NaOH). Funnels IS Sieve 200 (Aperture 2.00 mm)/BS Sieve 8/Tyler Sieve 9/ ASA Sieve 10 		
Materials and		(ACS Reagent grade)	
Reagents	2) NaOH Pallets (29 3) Standard NaOH 9 4) Phenolphthalein	97% purity) solution (0.1N)	
Preparation of Reagents	 Standard NaOH solution (0.1 N)-Dissolve 4g of anhydrous NaOH 1000ml of water to make 0.1 N standard solution. Phenolphthalein Indicator Solution: - Dissolve 1g of phenolphtha in 100ml of 95% (w/v) alcohol. 		tion.
Sample Preparation			eve with small volumes ained liquid in the same ated flask and made up
Method of analysis	1) Take a suitable distilled water phenolphthalein 15 seconds.	aliquot of the centrifuged lic and titrate against the 0.1 N indicator solution till a faint colume of 0.1 N NaOH used at	NaOH solution using pink color persists for


Calculation with units	Calculate the percentage of acidity of the brine in terms of citric acid from the	
of expression	relationship: 1ml of 0.1N NaOH solution is equivalent to 0.0064g of anhydrous citric acid.	
	Acidity as citric acid $(\%, w/v) = (0.0064 \times v) \times \frac{100}{V}$	
	Where <i>v</i> =the titre value in ml, and <i>V</i> =volume of brine aliquot taken in ml	
Reference	Indian Standard 2236: 1968	
Approved by	Scientific Panel on Methods of Sampling and Analysis	

प्रिकृपस्य स्थान	Determination of Drained Weight in Canned Fish Products			
Method No.	FSSAI 06.006:2023 Revision No. & Date 0.0			
Scope	This method is applicable to Canned Fish Products as specified in Food Safety and Standards (Food Products Standards and Food Additives) Regulations, 2011.			
Caution	 The sieve should be dry and clean before weighing. Similarly, the empty can should be dry and clean before weighing The weighing balance should be calibrated and tared to zero before use 			
Principle		product is determined follow ntage of the water capacity of		
Apparatus/ Instruments	 Weighing balance IS Sieve 200 (Aperture 2.00 mm)/BS Sieve 8/Tyler Sieve 9/ ASA Sieve 10 Hot air oven 			
Materials and	-			
Reagents				
Preparation of Reagents				
Sample Preparation	Maintain the canned sample at 20-30°C for a minimum 12 h prior to the examination.			
Method of analysis Calculation with units	 Carefully weigh the clean and dry sieve and empty the contents of the can to the sieve. Allow to drain for five minutes and weigh the sieve with the contents. The difference between the two weight gives the drained weight. For determination of water capacity of the can, cut out the lead without removing or altering the height of the double seam. Wash, dry, and weigh the empty can. Fill the empty can with distilled water at 20°C to 4mm vertical distance below the top level of the container and weigh. The difference in weight between the filled can and the empty can is the water capacity of the can. The drained weight is expressed as percentage of the water capacity of the can. 			
of expression	Where W_{sc} is the weight of the sieve with the content of the can, and W_s is the weight of the sieve alone Water capacity of the can Wc (g) = ($W_{CW} - W_C$) Where W_{cw} is the weight of water filled can, and W_c is the weight of the empty can Drained weight as percentage of water capacity $\left(\%, \frac{w}{w}\right) = \left(\frac{Dw}{Wc}\right) \times 100$			
Reference	Indian Standard 2236:		· W · W C	
Approved by		ods of Sampling and Analysis		

प्रकृपसंप्रस्था है	Determination of Per	mination of Percentage of Water in Drained Liquid in Canned Fish Products	
Method No.	FSSAI 06.007:2023	Revision No. & Date	0.0
Scope	• •	e to Canned Fish Products as a coducts Standards and Food	
Caution		sed should be well calibrated sitivity and accuracy of the re	•
Principle	Water content in the dra evaporation of the water	ained liquid is determined gra r in a vacuum oven.	avimetrically following
Apparatus/ Instruments	 Weighing balance – in milligram scale, well calibrated and maintained for sensitivity. Vacuum oven – for drying purposes, and maintain a constant temperature. IS Sieve 200 (Aperture 2.00 mm)/BS Sieve 8/Tyler Sieve 9/ ASA Sieve 10 Petri dish 		
Materials and Reagents			
Preparation of Reagents			
Sample Preparation	Empty the content of the can on a IS Sieve 200 and collect the drained liquid in a clean glass container until drained completely.		
Method of analysis	 Measure and pour an appropriate aliquot of the drained liquid on a pre-weighed petri dish. Weigh the petri dish with the aliquot Evaporate the aliquot on the petri dish in a vacuum oven, until a constant weight is achieved Weigh the petri dish following complete evaporation of the aliquot 		
Calculation with units of expression Water content in the drained liquid $(\%, \frac{w}{w}) = \left[\frac{W_{pda} - W_{pd}}{W_{pda} - W_{p}}\right]$		$\frac{W_{pda} - W_{pdd}}{W_{pda} - W_{pd}} \times 100$	
	Where W _{pda} = Weight of p W _{pdd} = Weight of petridis vacuum oven W _{pd} = Weight of empty p	sh following complete drying	of water in the
Reference	Indian Standard 2236: 1	968	
Approved by	Scientific Panel on Meth	ods of Sampling and Analysis	

Upuntunui SSU ********************************	Determination of Vacuum in Cans in Canned Fish Products		
Method No.	FSSAI 06.008:2023	Revision No. & Date	0.0
Scope	This method is applicable to Canned Fish Products as specified in Food Safety and Standards (Food Products Standards and Food Additives) Regulations 2011.		
Caution	Temperature of the can should be maintained constant at 25°C during the analysis. A calibrated vacuum gauge should be used.		
Principle	A vacuum gauge of piercing type or of an electric recording type is used to determine the vacuum in the can.		
Apparatus/ Instruments	 Vacuum Gauge – for the measurement of vacuum inside the can. Water bath- for maintenance of optimal temperature. 		
Materials and Reagents			
Preparation of Reagents	M.		
Sample Preparation	The can containing the sample is placed in a water bath and maintained at constant temperature (25°C) for a few hours, till the container temperature is uniform.		
Method of analysis	 Place the pointed end of the vacuum gauge in the middle of the top plate of the can and press firmly to pierce the can. Note down the vacuum in millimeters of mercury 		
Calculation with units of expression	The vacuum level is expressed in form of millimeters of mercury (mmHg).		
Reference	Indian Standard 2236: 1	1968.	
Approved by	Scientific Panel on Methods of Sampling and Analysis		

एफएसएसएसइ इंड इंड दर्ग प्रत्येश कहा कुमा की स्वरक वरिष्ठाल तका किए कुमा की स्वरक वरिष्ठाल तका किए कुमा की स्वरक वरिष्ठाल तका किए कुमा के स्वरक्त वरिष्ठाल स्वरूप की प्रतिक्ष किए कुमा कुमा कुमा किस्सा कुमा के स्वरक्त की स्वरक्त कुमा		nination of Residual Air in Retortable Pouch for Ready to Eat Finfish or Shellfish Curry	
Method No.	FSSAI 06.009:2023	Revision No. & Date	0.0
Scope	This method is applicable to Ready-to-Eat Finfish or Shellfish Curry in Retortable Pouches as specified in Food Safety and Standards (Food Products Standards and Food Additives) Regulations, 2011.		
Caution	 Check the retort pouch for existing leak or breakage. Ensure that the graduated measuring cylinder is fixed in an upright manner. 		
Principle	The residual air in the retort pouch is measured by measuring the displaced water inside an inverted graduated measuring cylinder when the residual air in the pouch is squeezed out at the underwater base of the measuring cylinder.		
Apparatus/ Instruments	 Funnel Graduated cylinder Water bath Glass water tank 		
Materials and Reagents			
Preparation of Reagents			
Sample Preparation	Sample is to be maintained at a uniform temperature(25 °C) prior to the estimation in a water bath.		
Method of analysis	a funnel on top wi 2) Placing a petri pla measuring cylinde glass tank. 3) Fix the measuring remove the petri base of the cyl experimental set u 4) The test is perfor funnel attached to 5) A corner of the p squeezed out.	te at the funnel mouth, slower and dip the funnel end cong cylinder in an upright madish slowly and allow an aitinder. Following elastration	why invert the graduated appletely in a water filled nner with a clamp and r pocket to form at the on presents a mode under water under the with water. e funnel and the air is

प्रप्रस्था स्थान	Determination of Bond Strength of Retortable Pouches		
Method No.	FSSAI 06.010:2023	Revision No. & Date	0.0
Scope	Retortable Pouches as sp	ble to Ready-to-Eat Finfish opecified in Food Safety and Standlitives) Regulations, 2011.	
Caution	 The tensile testing instrument should be adjusted in such a manner that most test specimen scans fall in the center two thirds of the chart. For this some trial runs must be carried out before actual sample analysis It is important to condition the specimens at least for 40 h before analysis 		
Principle	The piles of the laminate test specimen are separated at the edge of the specimen; either mechanically or with the help of a suitable solvents. Further the open ends of the laminates are clamped into a tensile strength machine and the force or energy to separate a 2-inch test portion of the specimen is determined.		
Apparatus/ Instruments	1) Grips— A gripping system that minimizes both slippage and uneven stress distribution is required. Grips lined with thin rubber, crocus cloth or pressure sensitive tape, as well as file-faced or serrated grips have been successfully used for many materials. Air-actuated grips have been found advantageous, particularly in the case of materials that tend to "neck" in the grips, since pressure is maintained at all times. 2) Tensile Strength Testing Machine—A tensile testing machine conforming to the requirements of Test Method D882. 3) Specimen Cutter—In accordance with Test Method D882.		
Materials and Reagents	Solvents like Toluene, ethyl acetate, MEK (2-Butanone) THE (tetrahydrofuran) or other suitable solvent to weaken the bond between layers sufficiently so that delamination may be started.		
Preparation of Apparatus and Calibration	instructions for a set of the set	ile testing machine according tensile testing thin films. It does not test specimen so chart, and draw speed at 28.0 for eincluded). A few trial runs may be used if it can be shown that specified. Itioning: Store specimens at 25 for either than compared to the specific enditioning: It is the specific enditioning: It is the specific endition of the specific enditioning is ecimens at the specific endition of the specific endition of the specific endition of the specific enditions for "wet' accomplished by placing the testing complished by placing the specific enditions for "wet' accomplished by placing the testing conditions for "wet' accomplished by placing the testing c	cans fall in the center $m/min \pm 10\%$ (10 or ay be required. Other they yield the same 3 ± 2 °C (73.4 \pm 3.6°F 40 h.

	moisture proof pouch and storing at 23 ± 2°C (73.4 ± 3.6°F) for 40 h. Conditioning to simulate other conditions of end use shall be determined by specific application. Normally the conditioning period will be 40 to 96 h. In some cases, conditioning will consist of treatment of test specimen prior to actual conditioning. Example: Boilable pouch applications. Test specimens may be immersed in boiling water for a period of time equal to normal end use and then conditioned for testing as specified (or perhaps tested shortly after boiling treatment if desired to simulate performance in use). NOTE 2—At these conditions pouch and contents should be aged to allow time for contents to migrate into seal area. Test Conditions: Conduct tests in the standard laboratory atmosphere of 23 ± 2°C (73.4 ± 3.6°F) and 50 ± 5% relative humidity.
Sample Preparation	 Sampling must be performed in a manner that will provide the desired information. No single procedure can be given for all situations. Therefore, Practice D1898 should be used as a guide in planning sampling procedures. Test Specimens—Cut strips 1.0 inch (25 mm.) wide ± 5% and about 10 inch (250 mm) long. It is important that the test specimens are cut with clean, uniform edges so as not to affect the test results. Test Unit—Test five specimens in the longitudinal (machine) direction. It may be desirable to test specimens in the transverse (cross-machine) direction for special purposes.
Method of analysis	 Initiate separation of the plies of the test specimens mechanically if possible. That is, crinkle roughly or apply adhesive tape to both sides, or both, and pull apart. If not, initiate the separation by making a heat seal and pulling it apart. If both the above fail, determine which solvent seems best by trial and error and initiate the separation by immersion of the end of the strip in the solvent for as little time as possible to initiate the separation. Heat the solvent solution only if absolutely necessary. Dry well in room air without heat. Clamp the separated ends of the test specimen in the jaws of the tensile testing machine using an original jaw distance of 25.4 mm (1.0 inch) and make certain the jaws are aligned vertically. The unseparated portion of each test specimen shall be treated in one of the following ways: a) Left loose to move around freely, b) Supported at 90° to the direction of draw by hand, or c) Mechanically supported at 90° to the direction of draw. Activate the tensile testing machine and record the force to separate 3 in. of the test specimen at 280 mm/min ± 10 % (10 or 12 inch/min). Repeat for each test specimen in the test unit.

Calculation with units	1) Disregarding the initial peak, determine the average force to separate
of expression	the next 2 inch of each test specimen. Express in N·m, g/25.4 mm, or lbf·in.
	2) Alternatively, determine the energy to separate this 2-inch segment of each test specimen. Express in J/m or ft·lbf/in.
Reference	ASTM F904-84 Comparison of Bond Strength or Ply Adhesion of similar Laminates Made from Flexible Materials.
Approved by	Scientific Panel on Methods of Sampling and Analysis

TSSOL words can you at one arrows ments also tribes event alren Mency of banks and fairly Vorkay.	Determination of Seal strength of Retortable Pouches			
Method No.	FSSAI 06.011:2023 Revision No. & Date 0.0			
Scope	This method is applicable to Ready-to-Eat Finfish or Shellfish Curry in Retortable Pouches as specified in Food Safety and Standards (Food Products Standards and Food Additives) Regulations, 2011.			
Caution	 Testing of samples with visual defects or other deviations from normality may or may not be appropriate depending on the purpose of the investigation. Indiscriminate elimination of defects can bias results. The values stated in either SI units or inch pound units are to be regarded separately as a standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard. 			
Principle	Sealed test specimens are cut using specimen cutter as per the grip dimensions of the Tensile Strength Testing Machine. The Test specimens are clamped into the machine and seal strength is determined as force or energy required to peel the test specimen.			
Apparatus/	1) Tensile Strength	Testing Machine—		
Instruments	 Tensile Strength Testing Machine— A testing machine of the constant rate-of-jaw-separation type, equipped with a weighing system that moves a maximum distance of 2 % of the specimen extension within the range being measured. The machine shall be equipped with a device for recording the tensile load and the amount of separation of the grips. Both of these measuring systems shall be accurate to 62 %. The rate of separation of the jaws shall be uniform and capable of adjustment from approximately 8 to 12 in. [200 to 300 mm]/min. The gripping system shall be capable of minimizing specimen slippage and applying an even stress distribution to the specimen. If calculation of average seal strength is required, the testing machine system shall have the capability to calculate its value over a specified range of grip travel programmable by the operator. Preferably, the machine shall have the capability also to plot the curve of force versus grip travel. Specimen Cutter 			
Materials and	, Francisco ductor	_		
Reagents				
Preparation of				
Reagents				
Sample Preparation	 Cut specimens using specimen cutter to a width of 0.984 in. [25 mm], 0.591 in. [15 mm], or 1.00 in. [25.4 mm] prior to test. Tolerance shall be 60.5 %. 			
Method of analysis	 Calibrate the tensile strength testing machine in accordance with the manufacturer's recommendations. Prepare sealed test specimens for testing by cutting to the dimensions. Edges shall be clean-cut and perpendicular to the 			

- direction of seal. Specimen length can be adjusted depending on the grip dimensions of the testing machine.
- 3) Adhering to one tail-holding technique, clamp each leg of the test specimen in the tensile testing machine. The sealed area the specimen shall be approximately equidistant between the grips. Recommended distance between grips (initial unconstrained specimen length) is:

Fin and Hot-Wire Seals

- Highly^A extensible materials 0.39 in. [10 mm]
- Less^A extensible materials 1.0 in. [25 mm]
- Lap Seals X + 10 mm^B
- $^{\rm A}$ Grip separation distance is recommended to be limited for highly extensible materials (100 + % elongation at seal failure) to minimize interferences.
- 4) Center the specimen laterally in the grips. Align the specimen in the grips so the seal line is perpendicular to the direction of pull, allowing sufficient slack so the seal is not stressed prior to initiation of the test.
- 5) A significant difference in measured seal strength has been shown to result, depending on the orientation of a fin-seal tail during the test. The test report should indicate the details of any technique used to control tail orientation.
- 6) The seal shall be tested at a rate of grip separation of 8 to 12 in./min [200 to 300 mm/min].
- 7) For each cycle, report the maximum force encountered as the specimen is stressed to failure and identify the mode of specimen failure.
- 8) If the test strip peels apart in the seal area, either by adhesive failure, cohesive failure, or delamination, the average peel force may be an important index of performance and should be measured by the testing machine as a part of the test cycle.
- 9) Follow the machine manufacturer's instructions to select the desired algorithm for calculating average seal strength.
- 10) If the test strip does not peel significantly in the seal area and failure is largely by breaking, tearing, or elongation of the substrate material, average force to failure may have little significance in describing seal performance and should not be reported in such cases.
- 11) A plot of force versus grip travel may be useful as an aid in interpretation of results. In those cases, the testing machine should be programmed to generate the plot.
- 12) Other properties, such as energy to cause seal separation, may be appropriate in cases where grip travel results only in peel. When other failure modes (elongation, break, tear, delamination (when not a designed peel seal separation mode) or other) are present in addition to peel of the seal, energy, and other functions must be interpreted with caution.

Calculation with units of expression

Report the following:

- 1) Complete identification of material being tested.
- 2) Equipment and test method or practice used to form seals, if known.
- 3) Equipment used to test seals.

	4) Ambient conditions during tests; temperature and humidity.
	5) Grip separation rate.
	6) Initial grip separation distance.
	7) Seal width.
	8) Machine direction of material in relation to direction of pull may be
	noted, if known and relevant to the test outcome.
	9) Force (strength) values to three significant figures.
	10) Technique of holding the tail (Technique A, B, or C) and any special
	fixtures used to hold specimens.
	11) If the seal is made between two different materials, record which
	material is clamped in each grip.
	12) Number of specimens tested and method of sampling.
	13) Visual determination of mode of specimen failure. Frequently more
	than one mode will occur in the course of failure of an individual strip.
	Record all modes observed.
	14) Maximum force encountered as each specimen is stressed to failure,
	expressed preferably in Newtons/meter or lbf/in. of original
	specimen width.
Reference	ASTM F88/F88M- 15 Standard Test Method for Seal Strength of Flexible
	Barrier Materials.
Approved by	Scientific Panel on Methods of Sampling and Analysis

एफएसएसएसएउड्ड इडडच वाल्या सम्बाधिक तलक प्राप्तका कार्या केला सम्बाधिक तलक प्राप्तका कार्या और परिवाद प्रत्यक्षण माराय केलाव्य और परिवाद प्रत्यक्षण माराय
Method No.
Scope
Caution

can may begin to tear at the edge of the grips during the test if the tape is too thin.). 6) The grit size of crocus-cloth and emery cloth is suggested to be at least 800. The use of these materials helps to prevent test specimens from slipping in the grips. One must be cautious when using these materials so that premature failures of the test specimens do not occur. 7) Utmost care shall be exercised in cutting specimens to prevent nicks and tears that cause premature failures. The edges shall be parallel to within 5 % of the width over the length of the specimen between the grips. 8) Test specimen: The test specimens shall consist of strips of uniform width and thickness at least 50 mm (2 in.) longer than the grip separation used. The nominal width of the specimens shall be not less than 5.0 mm (0.20 in.) or greater than 25.4 mm (1.0 in.). A widththickness ratio of at least eight shall be used. Narrow specimens magnify effects of edge strains or flaws, or both. 9) Test specimens shall be selected so that thickness is uniform to within 10 % of the thickness over the length of the specimen between the grips in the case of specimens 0.25 mm (0.010 in.) or less in thickness and to within 5 % in the case of specimens greater than 0.25 mm (0.010 in.) in thickness but less than 1.00 mm (0.040 in.) in thickness. 10) If the material is suspected of being anisotropic, two sets of test specimens shall be prepared having their long axes respectively parallel with and normal to the suspected direction of anisotropy 11) Microscopical examination of specimens should be used to detect flaws due to sample or specimen preparation. **Principle** Sealed test specimens are cut using specimen cutter as per the grip dimensions of the Tensile Strength Testing Machine. The Test specimens are clamped into the machine and tensile strength is determined by measuring the specimen extension, indicated by grip separation, extension indicators, or displacement of gage marks. Tensile Strength (nominal) is measured by dividing the maximum load by the original minimum cross-sectional area of the specimen. 1) Testing Machine—A testing machine of the constant rate-of-crosshead-Apparatus/ **Instruments** movement type and comprising essentially the following: a) Fixed Member—A fixed or essentially stationary member carrying one grip. b) Movable Member—A movable member carrying a second grip. c) Grips—A set of grips for holding the test specimen between the fixed member and the movable member of the testing machine; grips can be either the fixed or self-aligning type. In either case, the gripping system must minimize both slippage and uneven stress distribution. d) Drive Mechanism—A drive mechanism for imparting to the movable member a uniform, controlled velocity with respect to the stationary member. The velocity shall be regulated as specified in

- 3) Set the rate of grip separation to give the desired strain rate, based on the initial distance between the grips. Zero the calibrated load weighing system, extension indicator(s) and recording system.
- 4) In cases where it is desired to measure a test section other than the total length between the grips, mark the ends of the desired test section with a soft, fine wax crayon or with ink. Do not scratch these marks onto the surface since such scratches can act as stress raisers and cause premature specimen failure.
- 5) Place the test specimen in the grips of the testing machine, taking care to align the long axis of the specimen with an imaginary line joining the points of attachment of the grips to the machine. Tighten the grips evenly and firmly to the degree necessary to minimize slipping of the specimen during test.
- 6) Start the machine and record load versus extension.
 - a) When the total length between the grips is used as the test area, record load versus grip separation.
 - b) When a specific test area has been marked on the specimen, follow the displacement of the edge boundary lines with respect to each other with dividers or some other suitable device. If a load-extension curve is desired, plot various extensions versus corresponding loads sustained, as measured by the load indicator.
 - c) When an extensometer is used, record load versus extension of the test area measured by the extensometer.
- 7) If modulus values are being determined, select a load range and chart rate to produce a load-extension curve of between 30 and 60° to the X axis. For maximum accuracy, use the most sensitive load scale for which this condition can be met. The test may be discontinued when the load-extension curve deviates from linearity.
- 8) In the case of materials being evaluated for secant modulus, the test can be discontinued when the specified extension is reached.
- 9) If tensile energy to break is being determined, some provision must be made for integration of the stress-strain curve. This can be either an electronic integration during the test or a subsequent determination from the area of the finished stress-strain curve

Calculation with units of expression

1.**Tensile Strength** (nominal) shall be calculated by dividing the maximum load by the original minimum cross-sectional area of the specimen.

The result shall be expressed in force per unit area, usually megapascals (or pounds-force per square inch). This value shall be reported to three significant figures.

The maximum load can occur at the yield point, the breaking point, or in the area between the yield point and the breaking point.

NOTE —When tear failure occurs, so indicate and calculate results based on load and elongation at which tear initiates, as reflected in the loaddeformation curve.

2. **Tensile Strength at Break** (nominal) shall be calculated in the same way as the tensile strength except that the load at break shall be used in place of the maximum load.

	The result shall be expressed in force per unit area, usually megapascals (or
	pounds-force per square inch). This value shall be reported to three significant figures.
	Alternatively, for materials that exhibit Hookean behavior in the initial part of the curve, an offset yield strength shall be obtained. In this case the value shall be given as "yield strength at —% offset."
	4. Tensile Energy to Break , where applicable, shall be calculated by integrating the energy per unit volume under the stress-strain curve or by integrating the total energy absorbed and dividing it by the volume of the original gage region of the specimen. This shall be done directly during the test by an electronic integrator, or subsequently by computation from the area of the plotted curve.
	The result shall be expressed in energy per unit volume, usually in megajoules per cubic meter (MJ/m^3) or inch-pounds-force per cubic inch (inlbf/in ³ . This value shall be reported to two significant figures.
	For each series of tests, the arithmetic mean of all values obtained shall be calculated to the proper number of significant figures.
	The standard deviation (estimated) shall be calculated as follows and reported to two significant figures:
	$\{(\sum X^2 - nx^2)/(n-1)\}^{-1/2}$
	where: s = estimated standard deviation,
	X = value of a single observation,
	n = number of observations, and
	x = arithmetic mean of the set of observations.
Reference	ASTM D882-18 Standard test method for Tensile Properties of Thin Plastic Sheeting.
Approved by	Scientific Panel on Methods of Sampling and Analysis

एफएसएसएउइ इंडिया व्याप्त स्था के कार्य प्राप्त स्था कार्याच्या व्याप्त स्था के कार्याच्या स्था कार्याच्या कार्याच्या स्थापत के कार्याच्या कार्याच्या के विकास कार्याच्या कार्याच्या कार्याच्या कार्याच्या कार्याच्या स्थापत स्यापत स्थापत	Determination of Acidity in Fish Pickle				
Method No.	FSSAI 06.013:2023 Revision No. & Date 0.0				
Scope		able to Fish Pickle as specificts Standards and Food Additi			
Caution	The solution shall be cle shall not gel when abou	ear and stored at low temperat at 4°C).	ure (not discolored and		
Principle		k acid- strong base titration hthalein indicator that turns	_		
Apparatus/ Instruments	 Standard flasks (200ml) - for preparation of standard 0.1 N sodium Hydroxide. Erlenmeyer flasks (250ml) - to carry out the titrimetric analysis. Pipettes - to transfer the sample/ analyte. 				
	4) Burette (100ml 5) Funnels)- to be filled with the titrant (papers – to obtain clear so			
Materials and Reagents	 Standard Sodium Hydroxide (NaOH) solution (0.1N) Phenolphthalein Indicator Solution 				
Preparation of Reagents	 Standard Sodium Hydroxide solution (0.1 N)-Dissolve 4g of anhydrous NaOH in 1000ml of deionized water. Phenolphthalein Indicator Solution: - Dissolve 1g of phenolphthalein in 100ml of 95% (w/v) alcohol. 				
Sample Preparation	The solution to be titrated against the NaOH standard is properly filtered until a clear solution is obtained, free of any suspended solids/ other materials, that can be used for the titration.				
Method of analysis	Take 25-40ml of solution, in a 200ml standard flask add about 20-40ml of water if desired and titrate against the standard Sodium Hydroxide solution using phenolphthalein indicator solution till a faint pink color persists for 15 seconds.				
Calculation with units of expression	relationship.	ge of acidity in terms of acetic and acetic and acide solution is equivalent acid (%)			
		$0.0060 \times volume \ of \ 0.1 \ N \ No$ Volume of brine tak			
Reference	I.S.I Handbook of Food	Analysis (Part XII) – 1984, pag			
Approved by	Scientific Panel on Methods of Sampling and Analysis				

एफएसएसएसाइ इंड इ दार्ग प्रस्तां का कुमा और तरक प्रतिक्रम कार्याक के प्रतिक के प्रतिक्रम कार्याक के प्रति	Determination of Fluid Portion in Fish Pickle		
Method No.	FSSAI 06.014:2023		
Scope	This method is applicable to Fish Pickle as specified in Food Safety and Standards (Food Products Standards and Food Additives) Regulations, 2011.		
Caution	All weighing balances used should be well calibrated in a timely fashion and maintained for best sensitivity and accuracy of the readings.		
Principle	Basic weighing technique is used and corresponding calculation regarding the wet and dry weights are used to determine water percentage in sample.		
Apparatus/ Instruments	 Weighing balance – in milligram scale, well calibrated and maintained for sensitivity. Hot air oven – for drying purposes, and maintain a constant temperature. Water bath- maintenance of uniform temperature. Vortex/ shaker – for uniform mixing of the sample. 		
Materials and Reagents			
Preparation of Reagents	-		
Sample Preparation	 The sample is maintained at a uniform temperature in a water bath prior to the analysis to be carried out. This could be useful especially if the sample has been frozen over a period of time. The sample is then placed on a shaker to uniformly mix the contents. 		
Method of analysis	 A small incision is made in the pouch/ can that is pre-weighed, containing the sample of interest. The fluid in the container/ pouch is drained and the weight of the drained pouch is taken (this pouch contains only solid portion of the constituents.) 		
Calculation with units of expression			
Reference	IS 14515		
Approved by	Scientific Panel on Methods of Sampling and Analysis		

Up UNUNUNUNUNUNUNUNUNUNUNUNUNUNUNUNUNUNU	Determination of Alpha Amino Nitrogen in Fish Sauce			
Method No.	FSSAI 06.015:2023 Revision No. & Date 0.0			
Scope	This method is applicable to Fish Sauce as specified in Food Safety and Standards (Food Products Standards and Food Additives) Regulations, 2011			
Caution	Titration needs to carrie pH meter is slow in show	d out carefully, especially near wing the pH reading.	to the end point since	
Principle	Utilizing the amphoteric nature of amino acids, formaldehyde can be used to fix the basic amino group. After fixing basic amino group with formaldehyde, the carboxylic group shows acidity in the solution. The acidity is titrated with sodium hydroxide to determine formaldehyde ammonia content. Ammoniacal nitrogen is determined by titration with sulfuric acid after releasing the volatile nitrogen into a boric acid solution by distillation. The alpha amino nitrogen content is determined by subtracting the ammoniacal			
		ormaldehyde nitrogen content.		
Apparatus/ Instruments	 Glasswares: Burettes (50ml) Erlynmeyer flasks (250ml) 			
	4) Calibrated Pipettes5) Kjeldahl apparatus6) Centrifuge7) pH meter			
Materials and Reagents	4) Magnesium Oxide (5) Boric acid (≥99.5-1	50 ₄)0.05M (99.9%) tion (Analytical grade) ≤97%,)		
Preparation of Reagents	1) Mass (g) required	I to prepare 0.1 M NaOH = f NaOH (40g/mol) ×Vol of solut	ion required (L)	
	$\frac{0.}{3}$ Preparation of 4%		iired	
Sample Preparation	 4g of boric acid crystals dissolved in 100ml MilliQ water. The samples were centrifuged for 15 min at 7700g. The fat layer was separated from the aqueous layer, which was again filtered using a Whatman filter paper No. 4. The filtered liquid obtained was used for analysis. 			
Method of analysis	Formaldehyde nitroge 1) 1 ml of sample was 7.0 with 0.1 M NaOl 2) 10 ml of formaldeh	n was determined by the titra mixed with 9 ml of distilled wa	ter and titrated to pl	

3) The titration points are determined using a pH meter.	
To determine ammonia nitrogen,	
1) 50 ml of 10-fold diluted samples were placed in a Kjeldahl flask	
containing 100 ml of distilled water and 3 g of MgO.	
2) The mixture was distilled to release volatile nitrogen into 50 ml of 4%	
boric acid containing methyl red-bromocresol green.	
3) The distillate was finally titrated with 0.05 M H ₂ SO ₄ until the end-point was obtained.	
Formaldehyde nitrogen content was calculated as follows:	
Formaldehyde nitrogen content (g/L) = ml (NaOH _{pH7-pH9}) 0.1×14	
Ammonia nitrogen content was calculated as follows:	
Ammonia nitrogen content(g/L) = $5.6 \times 0.05 \times Y$;	
where Y is the volume of H_2SO_4 (ml)	
Amino nitrogen content was calculated using the following formula: Amino nitrogen content(g/L) = (Formaldehyde nitrogen content - Ammonia	
nitrogen content)	
doi: 10.1016/j.foodchem.2005.06.013	
Scientific Panel on Methods of Sampling and Analysis	

प्राचित्र प्रस्ति । अस्ति । अ	Determination of Total Nitrogen Content in Fish Sauce		
Method No.	FSSAI 06.016:2023	Revision No. & Date	0.0
Scope	This method is applicable	le to Fish Sauce as specified	in Food Safety an
	Standards (Food Products Standards and Food Additives) Regulations, 2011		
Caution	1) Use freshly opened H ₂ SO ₄ or add dry P ₂ O ₅ to avoid hydrolysis of nitrites &cyanates.		
	2) Ratio of salt to aci	d (w/v) should be 1:1 at the en	d of digestion for
	proper temperatu	re control. Digestion maybe in	complete at lower
	ratio; while Nitrog	gen maybe lost at higher ratio. I	Each gram of fat
	consumes 10ml of	f H ₂ SO ₄ , & each gram of carbohy	ydrate consumes
	4ml of H ₂ SO ₄ duri	ng digestion.	
	3) Use boiling chips t	to avoid bumping	
Principle	The sample is digested b	y boiling a homogeneous sam	ple in concentrate
	alkali is added to the acid by distillation of the amm excess standard acid in the solution and the amount	sult is an (NH ₄) ₂ SO ₄ solution. Edigestion mixture to convert Nonia gas in a receiving standare receiving solution is titrated upof nitrogen in a sample can be the in the receiving solution.	H ₄ + to NH ₃ , followerd acid solution. The sing standard NaO
Apparatus/	1) Kjeldahl flasks of l	hard, moderately thick, well an	nealed glass with
Instruments	total capacity ca 500-800ml.		
	2) Heating device ad	justed to bring 250 ml $\rm H_2O$ at 2	25°C to rolling boil
	in about 5 min.		
	3) Boiling chips-3 to	4 to prevent superheating.	
	4) Distillation unit-	500-800ml Kjeldahl or other	suitable flask, fitte
	with rubber stop	per through which passes low	ver end of scrubb
	bulb or trap to	prevent mechanical carryove	er of NaOH durin
	distillation. Upper	end of the bulb tube connecte	d to condenser tub
	by rubber tubing.	Trap outlet of condenser in suc	h a way as to ensu
		ion of NH3 distilling over into a	cid in receiver.
Materials and	1) Sulfuric acid- 93-9		
Reagents		metallic mercury- HgO or Hg, 1	reagent grade N-
	Free		
	3) Potassium sulfate	(or anhydrous sodium sulfate)	- reagent grade, N
	free.		
		agent grade, N-free.	
		ate, Zinc granules- reagent gra	de, Zinc dust-
	Impalpable powde		
	6) Methyl red indicat		
		standard solution- 0.5 or 0.10	r (sulfuric acid- 0.2
	or 0.05M)		
	8) Sodium Hydroxide	e standard solution- 0.1M (or o	ther specified
	concentration).		
Preparation of	1) Sulfide or thiosu	lfate solution - Dissolve 40g o	of commercial K ₂ S i
Reagents	$1LH_2O$ (Solution of $40gNa_2S$ or $80gNa_2S_2O_3$. $5H_2O$ in $1Lmay$ be used)		

	2) Sodium Hydroxide- Pellets or solution, nitrate free. For solution dissolve ca 450g solid NaOH in H ₂ O, cool and dilute to 1L. (Specific gravity of solution should be ≥ 1.36)
	3) Methyl red indicator - Dissolve 1g methyl red in 200ml alcohol. Standardize each standard solution with primary standard & check
	one against other. Test reagents before use by blank determination with 2g sugar, which ensures partial reduction of any nitrates present. 4) Hydrochloric acid standard solution. —0.5M, or 0.1M or (sulfuric
	acid. —0.25M or 0.05M).
	5) Sodium hydroxide standard solution . —0.1M (or other specified concentration) Standardize each standard solution with primary standard and check one against the other. Test reagents before use by blank determination with 2 g sugar, which ensures partial reduction of any nitrates present.
Sample Preparation	
Method of analysis	 Place weighed test portion (0.7–2.2 g) in digestion flask. Add 0.7 g HgO or 0.65 g metallic Hg, 15 g powdered K₂SO₄ or anhydrous Na₂SO₄, and 25 ml of H₂SO₄. If test portion >2.2 g is used, increase H₂SO₄ by 10 ml for each g test portion. Place flask in inclined position and heat gently until frothing ceases (if necessary, add small amount of paraffin to reduce frothing); boil
	briskly until solution clears (Around 2 h needed for test samples containing organic material). 3) Cool, add 200 ml H ₂ O, cool <25°C, add 25 ml of the sulfide or
	 thiosulfate solution, and mix to precipitate Hg. 4) Add few Zn granules to prevent bumping, tilt flask, and add layer of NaOH without agitation. (For each 10 ml H₂SO₄ used, or its equivalent in diluted H₂SO₄, add 15 g solid NaOH or enough solution to make contents strongly alkaline.) (Thiosulfate or sulfide solution may be mixed with the NaOH solution before addition to flask.)
	5) Immediately connect flask to distilling bulb on condenser, and, with tip of condenser immersed in standard acid and 5–7 drops indicator in receiver, rotate flask to mix contents thoroughly; then heat until all NH ₃ has distilled (≥150 ml distillate).
	6) Remove receiver, wash tip of condenser, and titrate excess standard acid in distillate with standard NaOH solution. Correct for blank determination on reagents.
Calculation with units of expression	When standard HCl is used:
	Percent N = [(ml of standard acid \times molarity of acid) – (ml of standard NaOH \times molarity of NaOH)] \times 1.4007/g test portion
	When standard H ₂ SO ₄ is used:
	Percent N = [(ml standard acid × 2 × molarity acid) - (ml standard NaOH × molarity NaOH)] x 1.4007/g test portion
Reference	JAOAC 38, 56(1955)
Approved by	Scientific Panel on Methods of Sampling and Analysis

UNUTED A CONTROL OF THE CONTROL OF T	Determination of Water Activity in Edible Fish Powder			ı Powder
Method No.	FSSAI 06.017:2023	Revision No. & Da	ite	0.0
Scope	This method is applicable to Edible Fish Powder as specified in Food Safety and Standards (Food Products Standards and Food Additives) Regulations, 2011.			
Caution	The sample should not be stored frozen before analysis. In frozen samples ice crystal may form and may interfere with the analysis. The sample which is colder or warmer, needs to be equilibrated at room temperature before analysis can be performed.			
Principle	Water activity, a_w , is ratio of vapor pressure of H_2O in product to vapor pressure of pure H_2O at same temperature. It is numerically equal to $1/10O$ of relative humidity (RH) generated by product in closed system. The measurement principles are based on the dew-point measurement or on the determination of the change in electrical conductivity of an electrolyte or in the permittivity of a polymer.			
Apparatus/ Instruments	 Dew point instrument—Equipped to measure temperature to ±0.1°C. Forced-draft cabinet—Constant temperature, set to maintain 25 ± 1°C; capacity ≥0.06 m³ (2 cu ft); with access port to accommodate instrument sensor leads. Use in conjunction with insulated box. Insulated box with cover—Large enough to hold test container and small enough to fit in forced-draft cabinet; with access port to accommodate instrument sensor leads. Protect test container from short-term temperature fluctuations. Manometric system—Sensitive to pressure differential of ±0.01 mm Hg (1.33 Pa). Test containers—120 or 240 ml (4 or 8 oz) wide-mouth or Mason glass jars with Al- or Teflon-lined screw caps and gaskets. Check integrity of cap seals and sensor leads by any means available, e.g., ability of system to hold vacuum, using Tesla coil. Water bath.—Capable of maintaining temperature constant within 0.1°C at 25 ± 1°C; capacity sufficient to hold measuring chamber of selected apparatus. 			
Materials and Reagents	aterials and 1) Hydrophilic solid—Microcrystalline cellulose, Type PH-101.		е РН-101.	
	Salt		Salt	a _w
	MgCl ₂		SrCl ₂	0.709
	K ₂ CO ₃		NaCl	0.753
	200			
Preparation of Reagents	Mg(NO ₃) ₂ NaBr CoCl ₂ Place selected reference soluble salts (lower a _w), and to intermediate of increase attention and the selection of	0.576 0.649 e salt in test container to depth of ~1.5 cm for	less soluble	e salts (higher a

increments, stirring well with spatula after each addition, until salt can

	absorb no more H ₂ O as evidenced by free liquid. However, keep free liquid to a minimum. These salt slushes are ready for use upon completion of mixing and are usable indefinitely (except for some high aw salts susceptible to
	bacterial attack), if contained in manner to prevent substantial evaporation
	losses. Some slushes, eg., NaBr, may solidify gradually by crystal coalescence
	with no effect on a _w .
Sample Preparation	
Method of analysis	Calibration:
	 Select ≥5 salts to cover aw range of interest or range of sensor bein used.
	 Measure humidity generated by each salt slush in terms of instrument readout.
	 3) Plot readout against a_w values for selected salts, using cross-section paper scaled for reading to 0.001 a_w unit.
	4) Draw best average smooth line through plotted points.
	5) Use this calibration line to translate sensor instrument readout of
	samples to a _w or to check vapor pressure or dew point instrument
	for proper functioning.
	Determination
	1) Place calibration slush or test sample in forced-draft cabinet, or H ₂
	 bath, until temperature is stabilized at 25 ± 1°C. 2) Transfer salt slush or test sample to test container, seal container
	with sensing device attached, and place in temperature contr
	device.
	3) Use volume of sample or slush >1/20 of total volume of samp container plus any associated void volume of sensing system, but no
	so much as to interfere with operation of system.
	4) Record instrument response at 15, 30, 60, and 120 min after te container is placed in temperature control device, or record response an attrip about
	on strip chart. 5) Two consecutive readings, at indicated intervals, which vary because than 0.01 aware evidence of adequately close approach to the consecutive readings.
	equilibrium.
	6) Continue reading at 60 min intervals if necessary. Convert larreading to a_w by calculations from physical measurements or before the continuous and the continuous continuous and the continuous
	reference to calibration line. 7) Make all measurements within range of calibration point
	donotextrapolate calibration line.
	8) Make all measurements in same direction of change, and if require by properties of sensor, expose sensor to controlled RH below
	ambient before starting each measurement.
alculation with units	
of expression	$a_{w} = \frac{pF(T)}{P_{s}(T)}$
	where,
	$\mathbf{a}_{\mathbf{w}}$ – water activity
	pF(T) – The partial water vapour pressure in equilibrium with the product
	analyzed at the temperature T (kept constant during measurement).

	$P_s(T)$ – is the water vapour saturation pressure in equilibrium with the pure water at the same temperature T.
Reference	ISO 18787:2017
Approved by	Scientific Panel on Methods of Sampling and Analysis

एफएसएसएउइ इ. इ. इ	Determination of Acid Insoluble Ash in Salted Fish/Dried fish & Ed Fish Powder		
Method No.	FSSAI 06.018:2023 Revision No. &	Date	0.0
Scope	This method is applicable to Salted fish/ Dried fish and Edible Fish Powder as specified in Food Safety and Standards (Food Products Standards and Food Additives) Regulations, 2011.		
Caution			
Principle	Acid insoluble ash is determined by dissolving ash in dilute hydrochloric acid (10% m/m). The liquid is then filtered through an ashless filter paper and thoroughly washed with hot water. The filter paper is then ignited in the original dish, cooled and weighed.		
Apparatus/	1) Silica crucible		
Instruments	 1) Silica crucible 2) Meker burner 3) Ashless filter paper 4) Desiccator 5) Weighing balance 6) Glass wares 		
Materials and	1) Hydrochloric acid (HCl), Purity 37%		
Reagents	2) Silver Nitrate (AgNO ₃), Purity≥99%		
Preparation of Reagents	1) Approximately 5 N HCl: Add 20 ml of 37% HCl very slowly into 30 ml of water		
Sample Preparation	Dry the test portion in a vacuum oven until no significant change in weight is observed in three consecutive weighing.		
Method of analysis	 Heat a platinum/porcelain/silica of furnace for 1 h, cool in a desiccator at 2) Weigh accurately about 2 g of samplatinum crucible. Ignite with a Mek 3) Complete the ignition by keeping in until grey ash results (6 to 8 h). Heat 600 °C for further 30 min, cool at completion of ashing, cool Cool and add 25 ml of dilute hydroglass and heat on a water bath for 10 ashless filter paper. Wash the residues in the filter paper and then place the filter paper and reference from chlorides as the analysis are free from chlorides as the cool of the filter paper and reference from the filter paper and from	and weigh. mple in the mer burner for a muffle fur the crucible and weigh sin chloric acid, maper with h maper with sil esidues back of d at 135±2°C 1 h.	porcelain, silica of about 1 h. Inace at 600± 20 of in muffle furnace at milarly, to confirm cover with a water of filter through a liter nitrate solution the crucible disk for about 3h. Ignit
	and weigh.8) Repeat the process till the differ weighing is less than one milligram.		

Calculation with units	Acid insoluble ash (on moisture free basis),		
of expression			
	Percent by mass = $\frac{100 \times (M_2 - M)}{(M_1 - M)}$		
	Where,		
	M_2 = lowest mass in g, of the dish with acid insoluble ash;		
	M= mass, in g, of the empty dish		
	M_1 = mass, in g, of the dish with the dried material taken for the test		
Reference	IS 14950:2001		
Approved by	Scientific Panel on Methods of Sampling and Analysis		

एफएसएसएउड्ड जिल्हा के कार्या भारतीय बाता सुमात तेने तत्त्व वांग्रेज्यस्य तत्त्व प्रमात के तत्त्व वांग्रेज्यस्य तत्त्व प्रमात के त्यांग्रेज्यस्य तत्त्वस्य तेने पांग्रेज्य सन्दार्था महातारा कित्यस्य के पांग्रेज्य सन्दार्था महातारा कित्यस्य के पांग्रेज्य सन्दार्था महातारा	Determination of Ash Content in Edible Fish Powder		
Method No.	FSSAI 06.019:2023		
Scope	This method is applicable to Edible Fish Powder as specified in Food Safety and Standards (Food Products Standards and Food Additives) Regulations, 2011.		
Caution	If the sample contains a large amount of fat, make preliminary ashing at low enough temperature to allow smoking off of the fat without burning.		
Principle	When a known weight of organic matter is ignited to ash, the weight of ash		
	thus obtained is determined gravimetrically and expressed in terms of percentage. Heating is carried out in 2 stages, to remove the water present and finally ashing at 600 °C in a muffle furnace.		
Apparatus/	1) Platinum dish		
Instruments	2) Hot air oven3) Muffle furnace		
Materials and			
Reagents			
Preparation of Reagents	-		
Sample Preparation	Dry the test portion in a hot air oven until no significant change in weight is observed in three consecutive weighing.		
Method of analysis	 Heat a platinum/silica crucible to 600 °C in a muffle furnace for 1 h, cool in a desiccator and weigh (W₁) Weigh accurately 2 g of the dried sample in to the crucible and take weight of the crucible with sample (W₂) Heat the sample in crucible at low flame by keeping on a clay triangle to char the organic matter. Complete the ashing in a muffle furnace for 6 to 8 h, set at 600 °C, to get white or greyish white ash. Cool the crucible in a desiccator and weigh (W₃) Heat the crucible in muffle furnaceat 600 °Cfor further 30 min, cool and weigh similarly, to confirm completion of ashing, cool. 		
Calculation with units of expression	Ash content (%) = $\frac{(W_3 - W_1) \times 100}{(W_2 - W_1)}$		
	Where W_1 -weight of crucible alone W_2 -weight of dry sample with crucible		
	W ₃ -weight of crucible with ash		
Reference	[1] AOAC Official Method 938.08, 21st Edition, 2019, chapter 35 pp 8. [2] JAOAC 21, 85(1938); 23, 589(1940)		
Approved by	Scientific Panel on Methods of Sampling and Analysis		

पफ्रप्सप्सप्ताई	Determination of Crude Fat in Edible Fish Powder						
Method No.	FSSAI 06.020:2023						
Scope	This method is applicable to Edible Fish Powder as specified in Food Safety and Standards (Food Products Standards and Food Additives) Regulations, 2011.						
Caution							
Principle	Fat from dried sample is extracted using Soxhlet apparatus where fat is extracted repeatedly using petroleum ether. The fat, except phospholipids, is soluble in hot petroleum ether and extracted. The extracted crude fat is quantified gravimetrically.						
Apparatus/	Soxhlet extraction apparatus						
Instruments	2) Thimble 3) Flat bottom flask 4) Round bottom flask 5) Water Condenser 6) Desiccator 7) Rotary solvent evaporator						
Materials and	8) Weighing balance1) Petroleum ether/Diethyl ether						
Reagents							
Preparation of Reagents							
Sample Preparation	Dry the test portion in a hot air oven until no significant change in weight is observed in three consecutive weighing.						
Method of analysis	 Weigh accurately 5-10 g (W₁) of dried sample in to a thimble and keep a cotton plug on top of it. Place the thimble in a Soxhlet apparatus and add approximately 200 mL petroleum ether in to a flat bottom flask, connect in the Soxhlet apparatus and distill for 16 h. In this process, the solvent will be condensed in the attached condenser and recirculate through the thimble, extracting the fat. Cool the apparatus and filter the solvent in to a pre-weighed round bottom flask (W₂). Rinse the flat bottom flask with small amount of petroleum ether and collect the washings in the round bottom flask. Remove the excess solvent using a rotary evaporator and dry the flask in a hot air oven at 80 to 100 °C, cool in a desiccator and weigh. The weight (W₃) should not vary by more than 1 mg, in three consecutive measurement at 30 min interval. 						
Calculation with units of expression	$Fat\ content, X\ (\%) = (W_3 - W_2) \times \frac{100}{W_1}$ Where $W_1\text{-weight of dry matter taken for extraction;}$ $W_2\text{-weight of round bottom flask}$ $W_3\text{-weight of the round bottom flask with fat}$						

	For conversion of dry weight to wet weight basis:			
	Fat content (%)wet weight basis = $\frac{X \times (100 - Moisture \ con}{100}$	tent)		
Reference	AOAC 960.39	7		
Approved by	Scientific Panel on Methods of Sampling and Analysis			

प्रभूपस्प्रस्थान्त्र ज्ञानंत्र व्याप्त व्यापत्त व्याप्त व्याप्त व्याप्त व्याप्त व्याप्त व्याप्त व्याप्त व्यापत व्याप्त व्याप्त व्याप्त व्याप्त व्याप्त व्याप्त व्याप्त व्यापत्त व्याप्त व्याप्त व्यापत्त व्	Determination of Crude Protein Content in Edible Fish Powder						
Method No.	FSSAI 06.021:2023 Revision No. & Date 0.0						
Scope	This method is applicable to Edible Fish Powder as specified in Food Safety and Standards (Food Products Standards and Food Additives) Regulations, 2011.						
Caution	Non protein nitrogen (NPN) if present in the sample may cause overestimation of protein content. If such presence of NPN is known, the amount should be subtracted from total nitrogen content.						
Principle	The nitrogenous compound in the sample are converted in to ammonium sulfate following digestion with concentrated sulfuric acid. The ammonium from the formed ammonium sulfate is liberated upon distillation with excess alkali. The liberated ammonia is absorbed in boric acid solution and titrate with a standardized acid for determination of nitrogen content. The nitrogen content is multiplied by a sample-specific protein factor (6.25 for fish products) to obtain the protein content.						
	Protein + H_2SO_4						
Apparatus/ Instruments	1) Burettes 2) Pipettes 3) Erlynmeyer flasks 4) Glass rods 5) Weighing balances 6) Kjeldahl digestion flask 7) Kjeldahl distillation unit						
Materials and Reagents	1) Kjeldahl catalyst 2) Concentrated Sulphuric acid (Nitrogen free, AR grade) 3) NaOH Solution (40%) 4) Standard 0.1 N sodium carbonate solution 5) Standard acid solution (HCl 0.1N or H ₂ SO ₄) 6) Boric acid solution (4%) 7) Tashiro's indicator 8) Methyl orange indicator 9) Phenolphthalein indicator						
Preparation of Reagents	 Pumice stones Kjeldahl catalyst- Mix 8 part of K₂SO₄with 1 part ofCuSO₄ NaOH Solution (40%)-Dissolve 40 g NaOH pallets in 100 ml distilled water and allow to cool 0.1 N Na₂CO₃ solution-Dissolve 530 mg of Na₂CO₃ in 100 ml distilled water Standard acid solution (HCl 0.1N or H₂SO₄)- if HCl, 0.1N (3.646g/I or H₂SO₄, 0.05M or 0.1N (4.9 g/L). Actual strength of the acid water 						

	solution, with methyl orange as indicator. The end point is indicated as red.
	5) Boric acid solution-Dissolve 40 g boric acid in 500 ml hot distilled
	water, cool and make up to 1 L.
	6) Tashiro's indicator-Stock solution A: 0.2% ethanolic methyl red and
	Stock solution B: 0.2% ethanolic methylene blue. Mix 100 ml "A" with
	50 ml "B". Mix 1 part of the mixture with 1 part of ethanol and 2 part
	of water and use as working solution.
Sample Preparation	1) Weigh 1 g of prepared sample and transfer to a Kjeldahldigestion
	flask.
	2) Add 7 g of digestion catalyst, 3 to 4 pumice beads to prevent bumping
	and 20 ml of concentrated H ₂ SO ₄ .
	3) Heat the flask gently in an inclined position until frothing ceases, then
	boil briskly for 2 h until a light green colour clear solution is obtained.
	4) To the digested and cooled solution add distilled water in small
	quantities with shaking and cooling till the addition of water does not
	generate heat. Transfer quantitatively into a 100 ml (V1) standard
	flask and make up the volume.
	5) Similar way prepare an reagent blank, without the sample.
Method of analysis	1) Transfer with pipette a known volume (V2) of the diluted digested
	solution in to the reaction chamber of the micro-Kjeldahl distillation
	apparatus.
	2) Rinse down with distilled water, add two drops of phenolphthalein indicator and 40% NaOH till the indicator turns pink.
	3) The receiver end of the distillation unit should be dipped into 10 ml boric
	acid solution (4%) containing a drop of Tashiro's indicator.
	4) Perform distillation for 4 min and absorb the liberated ammonia in the
	boric acid solution. Lower the flask, taking care that the receiver tip is
	not touching the solution, continue heating for another 1 min, wash the
	tip with distilled water.
	5) Determine the amount of ammonia absorbed by titrating with
	standardized acid solution till the green colour of the solution turns light
	pink.
Calculation with	
units of expression	Nitrogen $\left(mg\frac{N}{100g}\right) = 14 \times (b-a) \times N \times V_1 \times \frac{100}{V_2 \times W} = "X"$
	Where
	b = volume (ml) of standard acid used in sample titration
1	A= volume (ml) of standard acid used in reagent blank titration
	N= corrected normality of the standardized acid for titration
	V_1 = made up volume (ml) of the digested solution
	V_2 = volume of diluted digested solution taken for distillation
	W= sample weight
	14 is the atomic weight of Nitrogen
	$X \times 6.25$
	Protein content (%) = $\frac{X \times 6.25}{1000}$
	Where

the factor to covert mg N to g.
the factor to coverting it to g.
28.08
ic Panel on Methods of Sampling and Analysis

एफएसएसएआई रिकास कर्या व्यापना स्थापना स्थापन स्थापन स्थापन स्थापना स्थापना स	Determination of Total Available Lysine In Edible Fish Powder							
Method No.	FSSAI 06.022:2023 Revision No. & Date 0.0							
Scope	This method is applicable to Edible Fish Powder as specified in Food Safety and Standards (Food Products Standards and Food Additives) Regulations, 2011.							
Caution								
Principle	1-Fluoro-2,4- dinitrobenzene (DNFB) reacts with free ε- amino groups in proteins, forming DNFB- ε- amino lysine which is stable to acid hydrolysis Test portion is acid hydrolyzed and unavailable lysine is determined with amino acid analyzer; total lysine is determined on untreated test portion Available lysine, which was bound by DNFB, is determined by difference.							
Apparatus/	1) Rotary evaporator							
Instruments	2) Weighing balance 3) pH meter 4) HPLC Amino acid analyzer							
Materials and	1) Sodium bicarbonate (NaHCO ₃)							
Reagents	2) 1-Fluoro-2,4-dinitrobenzene (DNFB) 3) Hydrochloric acid (35 to 37% purity) 4) Anhydrous ether 5) Stannous Chloride dihydrate (SnCl ₂ .2H ₂ 0) 6) Potassium Iodide (KI)							
Preparation of	1) 10% NaHCO ₃ - Add 10g of anhydrous NaHCO ₃ into 100ml of deionized							
Reagents	water							
	2) Hydrochloric acid (6M) – Add 250 ml of concentrated Hydrochloric acid (12M) carefully and slowly into 250 ml of deionized water and mix well. Be cautious while handling to prevent bubbling over of acid							
Sample Preparation	Preparation of protein hydrolysate: (with DFNB) 1) Grind the test sample in a laboratory grinder, and sieve with a 20 mesh size per inch Sieve. Weigh 0.1-1.0g test portion into No. 5/0 crucible. (1.3ml). (Calculate the test portion weight to give fina concentration of 0.72- 0.88 mg protein/ml for amino acid analysis) 2) Place test portion or test portion and crucible in 500ml boiling flash and add 4-5 glass beads. Add 10ml freshly prepared 10% NaHCOs solution (w/v), 10ml alcohol and 0.3ml DNFB. Stopper flask and shake mechanically for more than 3 h. Carefully acidify with 6M HC (~2ml). Evaporate to oily dryness at 40 °C in vacuum rotary evaporator. Release vacuum very slowly to avoid disturbing residues Add 50-75ml of anhydrous ether, decant and re- evaporate in rotary							
	 evaporator at 40 °C without vacuum. Repeat washing with ether and evaporation for additional 3 times. 3) Add 125ml of 6M HCl. Heat carefully until all CO₂ is released, and boiled under reflux for 18h maintaining constant stream of pre purified N₂ through tygon capillary tube which comes to about 2.5cm above surface of solution. Cool for 1h and wash down residue in condenser with distilled water. Evaporate to sticky paste in vacuum 							

	rotary evaporator at 40 °C. Repeat addition of 100ml of water and
	evaporation 4 additional times, evaporating to dryness during the
	last evaporation.
	Preparation of protein hydrolysate without DFNB:
	1) Weigh test portion to give final concentration of 0.18-0.22mg
	protein/ml for amino acid analysis, in 5/0 crucible and placed into
	500ml boiling flask and add 4-5 glass beads. Add 200ml 6M HCl and
	distil off 100ml H ₂ 0. Wash down residue in condenser with water
	repeat the addition of water and evaporation cycle 5 additional
	times, evaporating to dryness during the last evaporation.
Method of analysis	Dilute the dried hydrolysate in suitable HPLC buffer and perform amino acid
riction of allary 515	analysis as per "Method for Determination of Protein Digestibility Corrected
	Amino Acid Score (PDCAAS): Part 2. Amino Acid Analysis (FSSA
	06.024:2022).
Calculation with	
units of expression	Test portion to use $(mg) = \left(\frac{C}{P}\right) \times 100$
units of expression	Where,
	C is the final concentration desired (mg/ml)
	P is the % protein in sample
	Determine the area under the curve for lysine or use integrator and
	compare areas of test portions with those from calibration standards
	containing known concentration of lysine (eg. 2.5±0.004 µM/ml 0.1M HCl)
	Containing known concentration of Tysine (eg. 2.3±0.004 μM/ ini 0.1M fici)
	% of available lysine = % of lysine of non DFNB treated test portion —
	% of lysine in DFNB treated test portion
	% of tysine in DFNB treated test portion
Reference	JAOAC 58 , 599(1975)

प्रभूप स्थाप स्थाप विशेष्ट विशेष वि	Determination of Protein Digestibility Corrected Amino Acid Score (PDCAAS) in Edible Fish Powder: Part 1 Data requirement and calculations					
Method No.	FSSAI 06.023:2023 Revision No. & Date 0.0					
Scope	This method is applicable to Edible Fish Powder as specified in Food Safe and Standards (Food Products Standards and Food Additive Regulations, 2011.					
Caution						
Principle	The calculation of the PDCAAS of a food protein is based on:					
	 The food's protein content, usually calculated using the factor 6.25 [specific AOAC factor listed in the Guidelines), multiplied by the nitroge (N) content of the food as determined by Kjeldhal method. Where a foo contains more than one protein source, the factor 6.25 shall be used determine the protein content. Where a foodstuff contains only of protein source, the listed shall be used. The food's essential amino acid profile, determined by typical analytic procedures or high-performance liquid chromatography (HPLC). The amino acid scoring pattern based on WHO guidelines. The food's in vitro digestibility, determined using a simulated gastr 					
	digestion.					
Apparatus/	Burettes					
Instruments	Pipettes Erlynmeyer flasks Glass rods Weighing balances Kjeldahl digestion flask					
	Kjeldahl distillation unit					
Materials and Reagents	 Kjeldahl catalyst Concentrated Sulphuric acid (Nitrogen free, AR grade) NaOH Solution (40%) Standard 0.1 N sodium carbonate solution Standard acid solution (HCl 0.1N or H2SO4) Boric acid solution (4%) Tashiro's indicator Methyl orange indicator Phenolphthalein indicator Pumice stones 					
Preparation of	1) Kjeldahl catalyst- Mix 8 part of K ₂ SO ₄ with 1 part of CuSO ₄					
Reagents	 NaOH Solution (40%)-Dissolve 40 g NaOH pallets in 100 ml distilled water and allow to cool 0.1 N Na₂CO₃ solution-Dissolve 530 mg of Na₂CO₃ in 100 ml of distilled water Standard acid solution (HCl 0.1N or H₂SO₄)- if HCl, 0.1N (3.646g/L) of H₂SO₄, 0.05M or 0.1N (4.9 g/L). Actual strength of the acid water determined by titrating against the 0.1 N Na₂CO₃ primary standard solution, with methyl orange as indicator. The end point is indicated a red. 					

5)	Boric acid solution-Dissolve 40 g boric acid in 500 ml hot distilled water,	
	cool and make up to 1 L.	
6)	Tashiro's indicator-Stock solution A: 0.2% ethanolic methyl red and	

Stock solution B: 0.2% ethanolic methylene blue. Mix 100 ml "A" with 50 ml "B". Mix 1 part of the mixture with 1 part of ethanol and 2 part of water and use as working solution.

Sample Preparation

- 1) Weigh 1 g of prepared sample and transfer to a Kjeldahl digestion flask.
- Add 7 g of digestion catalyst, 3 to 4 pumice beads to prevent bumping 2) and 20 ml of concentrated H₂SO₄.
- 3) Heat the flask gently in an inclined position until frothing ceases, then boil briskly for 2 h until a light green colour clear solution is obtained.
- 4) To the digested and cooled solution add distilled water in small quantities with shaking and cooling till the addition of water does not generate heat. Transfer quantitatively into a 100 ml (V₁) standard flask and make up the volume.
- Similar way prepare a reagent blank, without the sample.

Method of analysis

- Analyse for proximate nitrogen (N) of test product following "Method for Determination of Crude Protein Content in Edible Fish Powder (Method No. FSSAI 06.021:2022).
- 2) Calculate protein content (N x 6.25 or specific AOAC factor).
- 3) Analyse for essential amino acid (EAA) profile of the food and express as g/100 g protein as described in Method for Determination of Protein Digestibility Corrected Amino Acid Score (PDCAAS):

Part 2. Amino Acid Analysis.

- 4) Convert data to express EAA values to mg/g protein.
- 5) Determine the amino acid score using the equation.

$$EAA\ Score = \frac{mg\ of\ EAA\ in\ 1\ g\ of\ test\ protein}{Acid\ score\ mg\ of\ EAA\ in\ 1\ g\ reference\ protein} *$$

6) Reference protein*=FAO/WHO EAA requirement pattern (mg/g protein for different age groups (See Table below)

Amino Acid			Age g	roup (Years)		
(mg/g protein)	0.5	1 -2	3 –10	11 –14	15 –18	>18
Histidine	20	18	16	16	16	15
Isoleucine	32	31	31	30	30	30
Leucine	66	63	61	60	60	59
Lysine	57	52	48	48	47	45
Methionine plus Cystine	28	26	24	23	23	22
Phenylalanin e plus tyrosine	52	46	41	41	40	38
Threonine	31	29	25	25	24	23
Tryptophan	8.5	7.4	6.6	6.5	6.3	6
Valine	43	42	40	40	40	39

	Source: World Health Organization: Protein and amino acid requirements in human nutrition: report of a joint FAO/WHO/UNU expert consultation. In: WHO technical report series, 935(2007)5
	7) The amino acid with the lowest EAA score (test protein/reference) is the limiting amino acid.
	8) Determine the in- vitro protein digestibility of test products described in 'Method for Determination of Protein Digestibility Corrected Amino
	Acid Score (PDCAAS): Part 3. In vitro protein digestibility. 9) Calculate PDCAAS of test sample and standard casein.
Calculation with units of expression	PDCAAS= Lowest EAA score (limiting amino acid) × protein digestibility.
	PDCAAS is a number ranging from 0- 1.0 The PDCAAS of Casein should be 1.0
Reference	Rasco, B. (2001). Analyses of Protein Quality. Current Protocols in Food Analytical Chemistry, 00(1), B2.1.1- B2.1.15. doi: 10.1002/0471142913.fab0201s00
Approved by	Scientific Panel on Methods of Sampling and Analysis

एफएसएसएउड्डि इ.इ.इ.च.च अवतीय साम् व्यवस्था में साम्य वर्षाप्रकार अवस्था में स्थापिक सम्याप मासाय मीलाइन्हें भीत्राचे मासाय मासाय	Determination of Protein Digestibility Corrected Amino Acid Score (PDCAAS) in Edible Fish Powder: Part 2 Amino Acid Analysis					
Method No.	FSSAI 06.024:2023	Revision No. & Date	0.0			
Scope	The method describes the determination of amino acid composition of foods. The method described is a precolumn derivatization method followed by RP-HPLC. It is applicable to all foods. Other validated methods such as ion exchange chromatography with either pre-or post-column derivatization applicable to foods may also be used to calculate the essential amino acid levels.					
Caution		/ / / /				
Principle	 The determination of amino acids in foods involves: Acid hydrolysis of performic acid oxidized protein for the determination of all amino acids except tryptophan. Asparagine and glutamine are converted to aspartic acid and glutamic acid, respectively during acid hydrolysis. Cystine and methionine are converted to cysteic acid and methionine sulfonic acid by oxidation. Separation and quantitation of the released amino acids by ion exchange chromatography (IEC) using cation exchange resins and post-column derivatization (by a commercial amino acid analyzer or HPLC system) or by precolumn derivatization using various reagents followed by reverse phase HPLC. The method described here uses pre column derivatization with Phenylisothiocyanate (PITC). PITC reacts with amino acids to form phenylthiocarbamyl (PTC) derivatives, which can be detected with high sensitivity at 254 nm. A reverse-phase HPLC separation with UV detection is used to analyze the amino acid composition. Phenol: Solutions of phenol are corrosive to the skin and eyes, while pheno vapour can irritate the respiratory tract. Phenol and its solutions are 					
Apparatus/	flammable. Use in fume	hood. Wear safety goggles and	/or a face shield.			
Instruments	3) Centrifugal vacuum4) Work station for vapamino acids5) HPLC system equippara. Pumps for binary gr	tubes/heat sealable test tubes concentrator for phase hydrolysis and preco	lumn derivatization (
	e. Systems software to calculations.	t at 254 nm Intain a temperature of 38 ±1 I Intain control operation of HPLC and column (15 cm x3.9 mm).				
Materials and Reagents	 Hydrogen Peroxide Formic acid Glacial acetic acid Sodium acetate HPLC Gradient grad 	(30 %)				

- 6) High-purity calibration Standard amino acid hydrolysate containing 2.5 μMol/mL each in 0.1N HCl, of Asp (D), Glu (E), Ser (S), Gly (G), His (H), Arg (R), Thr (T), Ala (A), Pro (P), Tyr (Y), Val (V), Met (M), Cystine (C), Ile (I), Leu (L), Phe (F), Trp(W) and Lys (K).
- 7) Phenol (>99% purity). Do not use if colored.
- 8) L-cystine (>99.5% purity)
- 9) L-Methionine (> 99.5% purity)
- 10) Triethylamine (> 99.5% purity)
- 11) Phenyl isothiocyanate (PITC) (≥99.0%); stored at 20 °C under nitrogen to prevent breakdown products from forming. Do not use if pale vellow in color
- 12) Mercaptoethanesulfonic acid Na salt (MESA)
- 13) Concentrated Hydrochloric acid or Constant boiling Hydrochloric acid (Sequanal Grade)

Preparation of Reagents

- 1) Performic acid: prepared freshly by adding 1 mL of 30% H2O2 to 9 mL of 88 % formic acid and 50 mg phenol and allowed to stand at 25±3 °C for 1 h following which it is cooled to 0 °C.
- 2) Constant boiling hydrochloric acid (6 N, BP110 °C): Dilute concentrated hydrochloric acid 1:1 with distilled water and distill. Collect what distills at 110 °C. Store in a dark brown bottle at 5-8 °C. Stable for 24 months. Alternatively, ampoules of constant boiling hydrochloric acid (Sequanal grade) are commercially available
- 3) Acid hydrolysis solution: Constant boiling hydrochloric acid (6 N) containing 0.1% to 1.0% of phenol. Prepare fresh before use.
- 4) 2.5 M MESA solution: Available commercially
- 5) Derivatizing reagent: The derivatization reagent is made fresh daily of ethanol-TEA-water-PITC (7+ 1 + 1 + 1). To prepare 300 μLreagent (enough for 12 samples), 210 μL ethanol was mixed thoroughly with 30 μL each PITC, TEA, and water.
- 6) Solvent A: an aqueous buffer of 0.14M sodium acetate containing 0.5 mL/L TEA and titrated to pH 6.40 with glacial acetic acid: acetonitrile (94:6)
- 7) Solvent B, 60% acetonitrile in water
- 8) Sample diluent: Sodium phosphate, pH 7.6, containing 5% acetonitrile.

Sample Preparation

Method 1: Performic acid oxidation followed by acid hydrolysis

The sample is subjected to performic acid oxidation prior to acid hydrolysis. Acid hydrolysis using hydrochloric acid containing phenol is the most common procedure used for protein hydrolysis preceding amino acid analysis. The addition of phenol to the reaction prevents the halogenation of tyrosine.

1) Performic acid oxidation

- a. Weigh sample and standard casein containing 5 mg protein equivalence. If sample is wet, dry. The sample is dried so that water in the sample will not dilute the reagents.
- b. Add two mL of freshly prepared performic acid to the protein powder/dried sample.
- c. Allow the reaction to proceed for 4 h at 0 °C.
- d. Excess reagents are removed by diluting with water and then evaporated under vacuum using a concentrator.
- e. This is repeated two times and finally dried to completeness.
- f. Standard casein (equivalent to 5 mg protein), Standard amino acid cystine (1 mg) and methionine (1 mg) are treated similarly.

2) Acid hydrolysis can be carried out in the liquid phase or vapor phase.

I. Liquid Phase Hydrolysis

- a. Add 1.0 mL of the hydrolysis solution per 5 mg of protein.
- b. Flame seals the tubes in in vacuum or inert atmosphere to prevent oxidation.
- c. Place tubes in oven set at 110 °C for 24 h. Longer hydrolysis times. (e.g., 48 and 72 hours) are used if there is a concern that the protein is not completely hydrolyzed.
- d. After hydrolysis dry the test sample in vacuum to remove any acid and process in accordance with either pre column or post column derivatization
- II. Vapor Phase Hydrolysis This is one of the most common acid hydrolysis procedures, and it is preferred for microanalysis when only small amounts of the sample are available. Contamination of the sample from the acid reagent is also minimized by using vapor phase hydrolysis.
- a. Place vials containing the dried samples in a vessel that contains an appropriate amount of hydrolysis solution. The hydrolysis solution does not come in contact with the test sample.
- b. Apply an inert atmosphere or vacuum (less than 200 mm of mercury or 26.7 Pa) to the headspace of the vessel, and heat to about 110 °C for a 24-hour hydrolysis time.
- c. Acid vapor hydrolyzes the dried sample. Any condensation of the acid in the sample vials is minimized.
- d. After hydrolysis, dry the test sample in vacuum to remove any residual acid.

Note: These methods result in the destruction of tryptophan

Method 2: To estimate tryptophan.

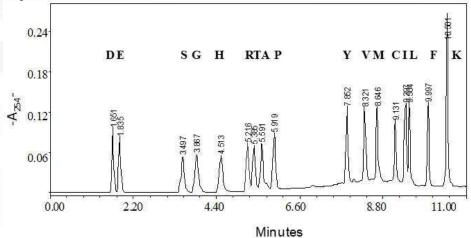
Tryptophan oxidation during hydrolysis is decreased by using 2.5 M MESA for hydrolysis.

- a. Place sample containing about 5 mg of the protein under test in a dried \ hydrolysis tube.
- b. The hydrolysis tube is placed in a larger tube with about 2 mL of the 2.5 M MESA.
- c. The larger tube is sealed in vacuum (about 50 mm of mercury or 6.7 Pa) to vaporize the hydrolysis solution.
- d. The hydrolysis tube is heated to between 170° to 185 °C for about 12.5minutes.
- e. After hydrolysis, the hydrolysis tube is dried in vacuum for 15 minutes to remove the residual acid.
- f. The sample is ready for derivatization.

Method of analysis

Precolumn derivatization,

- a. The calibration standard amino acid hydrolysate containing up to 12.5 nmol of each amino acid, acid hydrolysates of test sample, standard casein, cysteic acid and methionine sulfone were placed in individual 6 x 50 mm tubes enclosed in specially designed vacuum vial with resealable PTFE closure and were dried under vacuum to 50-60 mtorr.
- b. 20 µL of a freshly prepared redrying solution of methanol-water-TEA (2) + 2 + 1) was added to each tube, vortexed and dried under vacuum. When vacuum reached 50-60 mtorr (6-8 Pa), samples were ready for derivatization.
- c. The samples were derivatized by adding 20 µL of freshly prepared derivatization reagent to dried samples and sealing the vacuum vials for 20 min at room temperature.


d. The excess of reagents are then removed under vacuum using the workstation. When the vacuum reached 50-60 mtorr, the samples are ready for analysis by RP-HPLC.

RP-HPLC separation and detection of amino acids in the hydrolysate.

- a. The derivatized sample was dissolved in 0.2 mL of sample diluent.
- b. 5 µL of calibration standard is injected, followed by cysteic acid and methionine sulfone standard.
- c. Samples are injected in volumes ranging from 5-50 μL.
- d. HPLC conditions
- Column: PICO-TAG analysis column (15 cm x 3.9 mm). or equivalent
- Column oven temperature:38 ±1°C
- Flow rate: 1 mL/min
- Detection: 254 nm
- **Elution: Gradient**

Time (min)	Flow rate (ml/min)	%A	%В	Gradien t
0.01	1.0	100	0	
10.01	1.0	54	46	Convex
11.00	1.0	0	100	Linear
13.00	1.0	0	100	Linear
14.00	1.0	100	0	Linear
25.00	1.0	100	0	

Calibration standards, casein hydrolysate and sample are injected in duplicate.

A typical elution profile of the calibration standard (312.5 pmol of each amino acid). For single letter code refer 'Materials and reagents'

	CADE SGHRTAPMS YV ILFK			
	0.10 0.05 0.00 0.00 0.00 0.00 0.00 0.00			
Calculation with	A typical RP-HPLC elution profile of the hydrolysate of a performic ac oxidized protein. CA=Cysteic acid and MS=Methionine sulfone Using the area under the curve obtained from the chromatogram the g%			
units of expression	g/100g protein is calculated for each individual amino acid as follow:			
	$g \ of \ Asp = \frac{Area \ of \ Asp \ in \ sample}{Area \ of \ Asp \ in \ standard} \times C \times MW$			
	Where C = Concentration of standard injected MW = Molecular weight of amino acid Calculate the 'g' of all the amino acids individually Sum the total mass of all the amino acid			
	Calculate the g% for each amino acid e.g. Asp			
	For each of the essential amino acids this value is converted into mg/g protein and used in the calculation of EAA score shown in Part 1. mg/g protein =g/100 g \times 0.1			
Reference	Davidson, I. (2003). Hydrolysis of Samples for Amino Acid Analysis. Protein Sequencing Protocols, 111–122. doi:10.1385/1-59259-342-9:111 Bidlingmeyer, B. A., Cohen, S. A., Tarvin, T. L., 1984. Rapid analysis of amino acids using precolumn derivatization. <i>J. Chromatogr.</i> 336, 93-104			
	Bidlingmeyer, B. A., Cohen, S. A., Tarvin, T. L., & Frost, B. (1987). <i>A New,</i> Rapid, High-Sensitivity Analysis of Amino Acids in Food Type Samples. Journal			
	of AOAC INTERNATIONAL, 70(2), 241–247.			

प्रस्तिय बात कुमा और राज्य वर्षण्यस्य भारतीय बात कुमा और राज्य वर्षण्यस्य स्वास्थ्य और परिवाद करन्यम् मेताराच स्वास्थ्य और परिवाद करन्यम् मेताराच	Determination of Protein Digestibility Corrected Amino Acid Scot (PDCAAS) In Edible Fish Powder: Part 3 In-Vitro Protein Digestibility		
Method No.	FSSAI 06.025:2023		
Scope	The method describes, an in vitro enzyme digestion method that has a high correlation to the rat digestion model and uses casein standard		
	completely digestible control. The method is applicable in all types of products and protein concentrates. The range of this method is from 0 for in vitro digestibility.		
Caution			
Principle	Food samples are digested with pepsin at pH 2.0 followed by digestion trypsin and chymotrypsin in a neutral buffer to simulate the physiological conditions of gastric and intestinal digestion, respectively (1, 2).		
	(pepsin; pH 2.0, 37°C)		
	(1) Proteins — proteins + peptides + amino acids		
	(trypsin + chymotrypsin; pH 7.4, 37°C)		
	(2) Proteins — proteins + peptides + amino acids		
	Undigested proteins are removed by precipitation with trichloroaceticacion		
	The soluble nitrogen made available in the supernatant by the digestion determined by Kjeldhal method.		
	This digestibility score (D), in conjunction with the essential amino analysis of the sample, is used to calculate the PDCAAS.		
Apparatus/	1) Micro-pipettes (20 μL, 200 μL and 1 mL)		
Instruments	2) Timer		
	3) pH Meter 1) Applyitised belongs (conclude of vacishing to 1 / 0.0001 s)		
	 4) Analytical balance (capable of weighing to +/- 0.0001 g) 5) Heated water bath (capable of 95 °C) 		
	6) Shaking incubator (capable of 37 °C)		
	7) Refrigerated Centrifuge		
Materials and	Pepsin (from porcine gastric mucosa)		
Reagents	2) Porcine pancreatic Trypsin (Type IX)		
	3) Bovine Chymotrypsin (Type II)		
	4) Concentrated HCl		
	5) Sodium hydroxide		
	6) Trichloroacetic acid		
	7) TRIZMA Base		
Preparation of	1) Hydrochloric acid (0.06 N, pH 2.0): Place approx. 900 mL of dist		
Reagents	water in a 1 L beaker. Add 5 mL of concentrated HCl~ (12N) watering. Adjust the pH to 2.0 with 2 N NaOH. Transfer to a 1 L volume flask and bring to volume (1 L) with distilled water. Transfer to a suit		
	 sealed container. Store for up to 1 year at 23±2 °C. Trichloroacetic acid (40% w/v): Add 40 g of trichloroacetic aci approx 80 mL of distilled water and dissolve by stirring. Make to vol 		
	(100 mL) with distilled water. Store for up to 1 year at room temperar		
	Note: Ice-cold solution is preferred for precipitation 3) Hydrochloric acid (0.001 N, pH 3.0): Place approx 550 mL of dist water in a 500 mL beaker. Add 8.3 mL of 0.06 N HCl while stirring. Add		

the pH to 3.0 with 0.1 N HCl/NaOH. Transfer to a 500 mL volumetric flask and bring to volume (500 mL) with distilled water. Transfer a suitable sealed container. Store for up to 1 year at 23±2 °C. 4) Tris Buffer (1.0 M, pH 7.4): Place 150 mL of distilled water in a beaker. Add 30.29 g of Tris base while stirring. Slowly add 15 mL 12 N HCl. Adjust the pH to 7.4 with 1 N HCl and transfer to a 250 mL volumetric flask. Bring to volume (250 mL) with distilled water and mix. Sterile filter buffer and transfer to a sealed container. Store for up to 4months at 23±2 °C. 5) Pepsin Solution (1 mg/mL) - Weigh 1 mg of Pepsin per sample into a suitably sized centrifuge tube. Add 2additional milligrams so that there is extra for pipetting. Add 1 mL of the 0.06 N HCl per mg of Pepsin to the centrifuge tube. Lightly vortex to mix. Note: Make fresh daily, use within 30 min. 6) Trypsin/Chymotrypsin Solution (5 mg/mL) – Weigh 1 mg (\sim 15000 U) of Trypsin and 1 mg (\sim 150 U) of Chymotrypsin (per sample into a suitably sized centrifuge tube. Add 2 additional mg of each enzyme so that there is extra for pipetting. 7) Add200 μL of the 0.001 N HCl per sample (plus an additional 400μL) to the centrifuge tube. Lightly vortex to mix. Note: Make fresh daily, use within 30 min. **Sample Preparation** 1) Ground, frozen samples should be stored below -10 °C and thoroughly homogenized prior to weighing. Refrigerated samples should be weighed cold and returned to the fridge or freezer as soon as possible. 3) Do not allow refrigerated or frozen samples to warm to room temperature before weighing. Weigh —as is to ensure integrity of the matrix. 4) Liquid samples should be thawed under a stream of nitrogen prior to weighing. 5) Solid samples should be ground to a fine powder Method of analysis 1) Accurately weigh 0.5 g of milled sample and casein control sample (in triplicate) into a 50 mL Beckman centrifuge tube or conical flask. 2) Ensure that all of the sample drops to the bottom of the tube/does not stick to neck of flask. 3) Add 19 mL of HCl (0.06 N) and cap the tube. Mix thoroughly by vortex and incubate for 30 min at 37 °C in a shaking incubator set at 300 rpm. 4) Add 1 mL of pepsin solution to each sample and stopper. Mix thoroughly by vortex and incubate for 60 min at 37 °C in a shaking incubator set at 300 rpm. 5) After the pepsin incubation is complete, remove samples, cool and adjust the pH to 7.4 by the addition of 2 mL of 1.0 M Tris buffer, pH 7.4. 6) Cap the tubes and mix each sample thoroughly by vortex. 7) Add 200 μL of Trypsin/Chymotrypsin mixture to each sample, 8) Mix thoroughly by vortex and incubate for 4-5 h at 37 °C shaking incubator set at 300 rpm. 9) At the end of incubation place the samples in a boiling water bath for 10 min to inactivate enzymes. 10) Remove all samples from the boiling water bath and mix thoroughly by vortex. 11) Allow the samples to cool to 23± 3 °C for at least20 min

402 4 1 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1		
12) Add ice cold 40% TCA (~2.2 mL) solution to obtain a final TC		
concentration of 10%, cap and mix thoroughly by vortex. 13) Incubate the samples at 4 °C overnight (at least 16 h).		
$D(\%) = \frac{N-n}{N} \times 100$		
Where:		
N= Total nitrogen(g/100g)		
n= Soluble nitrogen(g/100g)		
Plank, D. W. (2017). US Pat 9,738,920. —In vitro method for estimating in vivo protein digestibility .		
The State of Food and Agriculture, Food and Agriculture Organization of		
the United Nations, 2011.		
Scientific Panel on Methods of Sampling and Analysis		

प्रकृपसप्सप्सप्ताई 555000 अवस्थित वात्र प्रकृपस्य श्री स्थान वर्षप्रवास्त्र श्रीवास्त्र प्रकृपस्य श्री स्थान वर्षप्रवास्त्र श्रीवास्त्र स्थान प्रवास्त्र स्थानस्य मातास्त्र अस्त्रम् वर्षे प्रवास्त्र स्थानस्य मातास्त्र अस्त्रम् वर्षे प्रवास्त्र स्थानस्य स्थानस्य	Determination of pH in Fish and Fish Products		
Method No.	FSSAI 06.026:2023		
Scope	This method is applicable to Fish Pickle and Fish Sauce as specified in Food		
	Safety and Standards (Food Products Standards and Food Additi Regulations, 2011.		
Caution	1) The pH meter used for detection should be calibrated regularly and		
	well maintained.		
	2) The calculations should be made sensitive according to the altitude of		
	the place where the experiment takes place.		
	3) The temperature during the measurement should be maintained at a		
	constant value.		
	4) The sample should be homogenized before measurement.		
Principle	pH is the measurement of H+ ion activity; It measures active acidity. pH may		
Timespie	be determined by measuring the electrode potential between glass and		
	reference electrodes; pH meter is standardized using standard pH buffers.		
Apparatus/	Sensitive pH meter. 1) Sensitive pH meter.		
Instruments	2) Water bath – to monitor and ensure stable temperature throughout		
mser unicites	the sample		
Materials and	the sample		
Reagents			
Preparation of			
Reagents			
Sample Preparation	Class 1 - Fish Sauce		
Sample Preparation			
	Mix the sample constituted by the whole product thoroughly, using a stirrer or a spatula.		
	Class 4 - Fish Pickle		
	After opening the container, transfer the liquid phase of the laboratory		
	sample to a separating funnel. Collect the aqueous phase and eliminate the		
	oil phase.		
	In applicable cases, combine the aqueous phase with the solid part of the		
	laboratory sample, homogenize a representative aliquot to give a moist		
	homogeneous mixture.		
	Place the homogenized sample in a water bath at room temperature for a few		
	hours. Mix the sample using a vortex before the measurement.		
	Note: The class 1 and class 4 products are specified according to ISO method		
Method of analysis	1) After the sample preparation is done, immerse or embed the		
	electrode and ensure that there is adequate contact between probe		
	and sample.		
	2) Read when the meter reading is stable.		
	3) Do three separate measurements on the test sample - the extreme		
	readings should not differ by more than 0.15 pH units.		

Calculation with units of expression	$pH = \frac{(pH1+pH2+pH3)}{3}$		
	where,		
	pH ₁ − pH of the first reading		
	pH ₂ – pH of the second reading		
	pH ₃ – pH of the third reading		
	pH – the final pH value that is the arithmetic mean.		
Reference	ISO 11289: 1993(E)		
Approved by	Scientific Panel on Methods of Sampling and Analysis		

UPUNUNUME SSSCI Vereits un gent olls rense utforsere sond then jour discounts of the jour discount sonder direct of the journey sonder direct of the journey of the journey theory of the land wife force of the journey	Determination of Moisture content in Fish & Fish Products		
Method No.	FSSAI 06.027:2023 Revision No. & Date 0.0		
Scope	This method is applicable to Edible Fish Powder and Freeze Dried Shrimp as specified in Food Safety and Standards (Food Products Standards and Food Additives) Regulations, 2011.		
Caution	All the instruments used should be calibrated in a timely fashion & maintained well for accuracy and sensitivity.		
Principle	The principle of the thermogravimetric method of moisture content determination is defined as the weight loss of mass that occurs as the material is heated. The sample weight is taken prior to heating and again after reaching a steady-state mass subsequent to drying.		
Apparatus/ Instruments	 Weighing balance Hot air oven Silica crucible 		
Materials and Reagents			
Preparation of Reagents	-		
Sample Preparation	Cut the large pieces into small sizes and mix. Grind the pieces as finely as possible preferably using an electric grinder so that a homogenous sample is obtained. Keep the material in an airtight container in order to prevent the loss of moisture during subsequent handling. Use this material for testing.		
Method of analysis	Weigh about 5g of the prepared sample into tared silica crucible or dish. Dry the dish in an air oven 100±1°C for 6h. Cool in a desiccator and weigh.		
Calculation with units of expression	$Moisture(^{W}/_{W}\%) = \frac{M1 \times 100}{M2}$ Where,		
	M_1 = loss of mass in g in sample M_2 = mass in g of sample taken for test		
Reference	JAOAC 930.15ami		
Approved by	Scientific Panel on Methods of Sampling and Analysis		

UNUNUNUNUNUNUNUNUNUNUNUNUNUNUNUNUNUNUN	Determination of Salt Content in Fish & Fish Products		
Method No.	FSSAI 06.028:2023	Revision No. & Date	0.0
Scope	This is a titrimetric analysis that can be applicable to: Salted fish/dried salted fish Canned Fishery Products Ready-to-Eat Finfish or Shell Fish Curry in Retortable Pouches Fish Pickle Sturgeon Caviar Fish sauce		
Caution	Standards solutions sho	uld be freshly prepared and stand	dardized
Principle	This method determines the chloride ion concentration of a solution by titration with silver nitrate. As the silver nitrate solution is slowly added, a precipitate of silver chloride forms. The end point of the titration occurs when all the chloride ions are precipitated.		
Apparatus/	1) Weighing balance		
Instruments	 2) Pipettes 3) Burettes 4) Erlenmeyer flasks 5) Standard flasks 6) Beaker 7) Hotplate /Sand bath 		
Materials and		ard solution (0.1M)	
Reagents	2) Ammonium thiocyanate standard solution (0.1M)3) Ferric Indicator		
Preparation of Reagents	 Silver nitrate standard solution (0.1M) - Prepare 0.1M AgNO₃ & standardize against 0.1M NaCl containing 5.844g of pure dry NaCl/L. Ammonium thiocyanate standard solution (0.1M) - Prepare 0.1M and standardize against 0.1M AgNO₃. Ferric Indicator - Saturated solution of FeNH₄(SO₄)₂.12 H₂O 		
Sample Preparation	 Shellfish meats- Weigh 10g meats, liquid, or mixed meats and liquid into 250ml Erlenmeyer or beaker. Other fish products- Use suitable size test portion, depending on NaCl content. 		
Method of analysis	 Add known volume 0.1M AgNO₃ solution, more than enough to precipitate all Cl as AgCl & then add 20ml of HNO₃, boil gently on hot plate or sand bath until all solids except AgCl dissolve (usually 15 min). Cool, add 50ml water & 5ml indicator & titrate with 0.1M NH₄SCN solution until becomes permanent light brown. Subtract mL 0.1M NH₄SCN used from the volume of 0.1M AgNO₃ added and calculate difference as NaCl. 		
Calculation with units of expression			
Reference	JAOAC 20 . 410(1937), 2	3. 589(1940)	

	CAS-7647-14-5 (sodium chloride)
Approved by	Scientific Panel on Methods of Sampling and Analysis

एफएसएसएउडि इंड दा अव्योग बाग सुमाने के समझ वरिष्ठमा रूप दिन्न के विकास के दिन्न हैं । स्थापन और परिवास के प्रस्थात महात्व अस्त्राप्त के स्थापन सम्मान महात्व अस्त्राप्त के स्थापन के स्थापन सम्मान	Determination of Histamine in Fish & Fish Products					sh Products
Method No.	FSSAI 06.029:2023	Revision No. & Date	0.0			
Scope	High-performance liquid chromatography (HPLC) method to a histamine in following categories of fish and fishery products intend human consumption – Raw/chilled/frozen finfish Thermally processed fishery products Smoked fishery products					
	 Fish mince/ surf Battered and bro Other ready to e Other value-add Other fish-based 	imi analogues eaded fishery products at fishery products ed fishery products I products d dried fishery products				
Caution	 The instruments used are required to be calibrated and maintained in a timely fashion for better sensitivity and accuracy. To avoid matrix effect and bias (Method of analysis), carry out calibration line on same matrix (histamine free) as the sample analyzed. 					
Principle	This method enables the separation of histamine among biogenic amines in fish and fishery products. The sample is extracted by mixing with perchloric acid. Pre-column derivatization is performed using dansyl chloride. The biogenic amines and the components in the solution are separated by HPLC using UV detection. Histamine concentration is calculated from the peak area ratio of histamine and internal standard with a calibration curve.					
Apparatus/ Instruments	1) Grinder 2) Balances (precisions 0.1 g & 0.001 g) 3) Crusher/ Homogenizer					
	5) Centrifuge tubes 6) Pipettes (ranges 7) Tubes (tempera 8) Vortex 9) Water bath ((60 10) Refrigerator (5° 11) Freezer (capable 12) Nitrogen evapor 13) Needles (20 G 0. 14) Filters (0.2 µm c 15) Syringes (2 ml, c 16) LC system (pum	e of temperatures < -18 °C) rator 9 mm disposable) lisposable, PTFE/ PP) disposable) p, refrigerated autosampler, c	equivalent)			
	°C)), UV detector λ = 254 nm 17) LC Column (C18 5 μ m 100 Å (250 mm x 4.6 mm) or equivalent) 18) Glass autosampler vial (2 ml with insert (200 μ l) & cap)					

Materials and	Use only reagents of recognized analytical grade & water complying with
reagents	grade 1 of ISO 3696, unless otherwise specified. Solvents shall be of quality
	for HPLC analysis, unless otherwise specified.
	1) Acetone
	2) Acetonitrile
	3) Toluene
	4) Water (HPLC) grade
	5) Water (distilled or equivalent)
	6) Nitrogen gas
	7) Perchloric acid, c(HClO ₄) = 0.2 mol/l
	8) Saturated sodium carbonate solution
	9) Dansyl chloride solution, $p(C_{12}H_{12}CINO_2S) = 7.5 \text{ mg/ml}$
	10) L- proline solution, $p(C_5H_9NO_2) = 100 \text{ mg/ml}$
	11) Histamine stock solution, $p(C_5H_9N_3) = 12.5 \text{ mg/ml}$
	12) Internal standard (IS) 1,7 –diaminoheptane stock solution,
	$p(C_7H_{18}N_2) = 6.4 \text{ mg/ml}$
Preparation of	1) Perchloricacid, ($HClO_4$) = 0.2 mol/l
reagents	2) Dilute 19.5 ml of HClO ₄ (65%) or 17.2 ml of HClO ₄ (70%) to 1000
reagents	ml of water. The solution is stable for six months if stored at room
	temperature (15 °C to 25 °C)
	3) <i>Saturated sodium carbonate solution</i> : Dissolve 110 g of sodium
	carbonate in about 150 ml of water. The solution is stable for 3
	months if stored at 5 °C \pm 3 °C
	4) Dansyl chloride solution, $p(C_{12}H_{12}ClNO_2S) = 7.5 \text{ mg/ml}$
	5) Dissolve 0.375 g of dansyl chloride in 50 ml of acetone. The
	solution is stable for 3 weeks if stored in dark at a temperature less than -18 °C.
	6) <i>L-proline solution</i> , p(C ₅ H ₉ NO ₂) = 100 mg/ml. Dissolve 1 g of L-
	proline in 10 ml of water. The solution is stable for 3 weeks if stored
	at a temperature of around 5 °C ± 3 °C
	7) Histamine stock solution, p $(C_5H_9N_3) = 12.5$ mg/ml. Dissolve 1.034 g
	of histamine hydrochloride in 50 ml of water. The solution is stable
	for 1 year if stored at < -18 °C
	8) <i>Internal standard</i> (IS) 1, 7diaminoheptane stock solution,
	$p(C_7H_{18}N_2) = 6.4$ mg/ml. Dissolve 0.320 g of 1, 7diaminoheptane in
	50 ml of water. The solution is stable for three weeks if kept at a
C	temperature of 5 °C ± 3 °C
Sample preparation	1) Homogenize the sample by grinding in a mixer.
	2) Transfer a test portion consisting of 5 g \pm 0.1 g of homogenate to
	centrifuge tube.
	3) If the matrix is complex or difficult to obtain in histamine fre
	condition (e.g. fishmeal, fish sauce, etc.) the spiking can be performe directly using standard addition method.
Method of analysis	Extraction:
Mediou of allalysis	1) Add 10 ml of perchloric acid & 100 µl of 1, 7diaminoheptane to 5 g of
	fish (sample) in the centrifuge tube and mix.
	2) After complete homogenization, centrifuge at 8000 g for 5 min a 4 °C.

Derivatization:

- 1) Transfer 100 μl of the supernatant into a tube; add 300 μl of sodium carbonate solution and 400 µl of dansyl chloride solution.
- 2) Vortex and incubate for 5 min in the dark at 60 °C.
- 3) Cool the tube under the tap water and add 100 µl of L- proline solution.
- 4) Vortex and place the tube in the dark for 15 min. Supernatant can be stored at <-18 °C for one week).

Purification:

- 1) Add 500 µl of toluene and vortex. Manipulation can be stopped at this step with storage at <-18 °C for a week maximum.
- 2) Transfer as much as possible of the upper organic phase into a new tube and dry it in the fume hood with a stream of nitrogen.

(Note 3: The organic phase toluene contains the derivatized histamine and not the "non organic" (aqueous) phase. The organic phase can easily be recovered by freezing theaqueous phase (<-18 °C for 30 min minimum). In addition, freezing can improve the quality of the upper phase.)

3) Re-suspend the dry tube with 200 µl of acetonitrile/water (60/40 volume fraction) and vortex. Filter the solution in a glass autosampler vial and fill the autosampler.

LC conditions:

Injection volume: 20 µl 25 ± 2 °C Column oven: Tray temperature: 5 ± 2 °C Flow rate: 1 ml/min

Mobile phase: Acetonitrile/ water

Gradient-

Time (min)	Water (%)	Acetonitrile (%)
0	40	60
11	25	75
11.1	5	95
20	5	95
20.1	40	60
30	40	60

Range of standard sample:

4) Standard samples should be prepared by supplementing histamine stock solution to sample homogenates from a histamine free matrix.

Concentration	Volume of histamine
(mg/Kg)	stock solution (µl)
0	0
25	10
50	20

		100	40	
		250	100	
		500	200	
		_	lume to histamine free samples, p ling procedure for histamine estin	
Calculation with units of expression		es and an internal st	near regression analysis, using his andard with following formula: $= \frac{A_{HS}}{A_{IS}} \times C_{HS}$	tamine
	A _{HS} is area of the	tion of histamine in e histamine standard internal standard p	•	
		wing regression equ	the concentration of histamine in fation: $\frac{\frac{A_H}{A_I} \times \frac{5}{m}}{a}$	the
	A _H is area of the A _{IS} is area of the a is slope of the	histamine peak internal standard p	ramine in sample (mg/ Kg) eak	
	outside the rang test portion in o sample.	ge of standard samp order to be in linear	o 5 g, but if the sample concentra le, conduct a new analysis with s range regarding representativity	smallei 7 of the
Reference			of the food chain- Detection of fishery products- HPLC method	
Approved by	Scientific Panel	on Methods of Samp	ling and Analysis	

प्राप्त प्रमुक्त के साथ कर	Determination of free formaldehyde in fish				
Method No.	FSSAI 06.030:2023				
Scope	This method is applicable to Raw/ chilled/ frozen finfish as specified in Food Safety and Standards (Food Products Standards and Food Additives) Regulations, 2011				
Caution	 The DNPH must be recrystallize to get pure DNPH crystals. Purity on DNPH affects the derivatization reaction performance. Appropriately dilute the extract before injection into GC-MS/MS Higher concentration injection will lead to carry over and contamination of GC column. 				
Principle	Free formaldehyde in fish is extracted by aqueous extraction and derivatized with 2,4-dinitrophenylhydrazine (DNPH). The derivatized formaldehyde is identified and quantified using GC-MS/MS in MRM mode.				
Apparatus/	1) Laboratory Tissue Grinder				
Instruments	 Laboratory Tissue Grinder Balances (precisions 0.1 g & 0.001 g) Refrigerated centrifuge (capable of centrifugal force of 8000 g) Centrifuge tubes (plastic with closing caps) Pipettes (ranges 20 μl to 200 μl, 100 μl to 1000 μl, 5000 μl & 10000 μl) Vortex mixer pH paper/pH meter Shaking Incubator (40 °C ± 1°C) with dark cover or equivalent) Refrigerator (5 °C ± 3 °C) Freezer (capable of temperatures < -18 °C) Needles (20 G 0.9 mm disposable) Filters (0.2 μm disposable, PTFE/ PP) Syringes (2 ml, disposable) Glass autosampler vial (2 ml with insert (200 μl) & cap) GC Capillary Column (DB-5MS 30m, 0.250mm, 0.25μm or 				
	equivalent; temperature 60° c to 325° c) 16) Gas Chromatograph – tandem mass spectrometer.				
Materials and	Formaldehyde in water (CRM)				
reagents	2) Formaldehyde d ₂ (Internal standard) 3) Deionized Water 4) Sodium Hydroxide (1.0 N) 5) Glacial Acetic Acid 6) 2,4 Dinitrophenyl hydrazine 7) Acetonitrile 8) Orthophosphoric Acid (85% in water) 9) Ethyl Acetate (HPLC grade) 10) Dispersive cleanup kit (Mg SO ₄ , C18, PSA)				
Preparation of	,				
reagents	 NaOH-1N: 100 g in 1000 ml of water Acetate buffer: Dilute 64.3 ml of 0.1 N NaOH and 5.7 ml glacial Acetacid to 900 ml with organic free reagent water. Dilute to 1 liter wi organic-free reagent water. Adjust the pH to 4.93±0.02 if needed 				

Recrystallisation of 2,4 dinitrophenyl hydrazine: DNPH should be recrystallized prior to use by dissolving 10g of 2,4 DNPH in 100ml hot analytical grade acetonitrile to form saturated solution. After complete dissolution, the solution was cooled to room temperature, capped in brown bottle and stored overnight at 4°c for crystallization. The solvent is decanted and the crystals were collected after drying under gentle stream of nitrogen. 4) DNPH working solution: 150 mg of 2,4 DNPH Crystals were accurately weighed, dissolved in 49.5 ml of acetonitrile and mixed with 0.5 ml of orthophosphoric acid (85%) 5) Formaldehyde in water CRM solution = 55.3 mg/l 6) Internal standard (IS) formaldehyde D2= 1000 mg/l-Dissolve 10 mg of formaldehyde D2 in 10 ml of HPLC/GC grade Ethyl acetate. The solution is stable for one year if kept at a temperature of 5 ± 3 °C 1)Homogenize the sample by grinding in a laboratory grinder mixer. Sample preparation 2) Transfer a test portion consisting of 2 g \pm 0.1 g of homogenate to a centrifuge tube. 3)Add 40 ml of Acetate buffer in 2 g of fish (sample) in the centrifuge tube and mix and adjust pH 5 using pH paper, then sonicate for 30 min. 4) After complete homogenization, centrifuge at 8000 rpm for 10 min at 5) Collect 10 ml of supernatant in a graduated centrifuge tube, then add type-1 water to made up to 20 ml, adjust the pH to 5 with orthophosphoric acid. 6) Derivatization: Add 6 ml of 2,4 DNPH in the centrifuge tube, vortex and place in a shaking incubator for 1 h, at 150 rpm in the dark at 40 °C. 7) After derivatization extract with 10 ml of HPLC/GC grade ethyl acetate, vortex for 10 mins then centrifuge for 8000 rpm for 10 mins. Repeat the ethyl acetate extraction steps twice and pull all the supernatant. 8) Clean up: Add 2 ml of the pulled ethyl acetate extract to the dispersive clean up tube containing (150 mg MgSO₄, 25 mg C18 and 25 mg PSA) and vortex for 2 min then centrifuge at 12000 rpm for 10 min. 9) After centrifugation, filter the supernatant with 0.22 µm (PTFE) syringe filter. 10) Dilute the samples appropriately with ethyl acetate as per the sensitivity of the instrument used and spiking concentration of matrix fortified standards. Add equal volume of internal standard solution to each vial before injection. Method of analysis Detection and estimation by GC- MS/MS: GC conditions: Injection volume: 1 μl (constant temperature splitless, preferably in a PTV injector) GC Oven Programs Rate(0c/min) Temperature(0c) Hold Time(min)

150.0

290.0

310.0

3.00

3.00

1.00

25.0

15.0

	Injection mode:Carrier mode :Inlet	PTV, CT Splitle Constant flow	ess	
	Temperature : Split flow :	290°C 50.0 ml/min		
	Split less time:	1.00 min		
	Carrier gas flow:MRM Condition			
	Compound	Precursor ion	Product ion	Collision energy
	Formaldehyde 1	210	78	10
	Formaldehyde 2	210	122	10
	Formaldehyde D3	213	125.1	5
Calculation with units	4, 8, and 16 ppm level for another set. The different where formaldehyde contained for deliberately as way as mentioned in the fortified calibration start necessary unless different area ratio of Formaldehy	nt range of calibra ontent might be dulterated sampl sample preparati ndards. Multiplica nt dilution is use	ation is required low, and for less. Prepare the solon protocol and ation with diluted for a particular	I to cover fresh fish high concentration samples in the same use them as matrix ion factor won't be r sample.
of expression	is plotted against differe equation is formed. The instrument software using quantifier transition and Other than quantifier an unambiguous identificat	ent calibration contention in concentration in the calibration in the calibration in the other transind qualifier transind qualifier transing the content in the calibration in the cali	ncentration and n sample is calc on curve. One tr ition is used as	a linear regression rulated through the ransition is used as qualifier transition.
Reference	EPA METHOD 8315A			
Approved by	Scientific Panel on Metho	ods of Sampling a	and Analysis	

प्रभूपसंप्रस्था । 55501 अवर्षन काव वृश्य और तक्क वर्गकरक स्वास्त्र और परिवर करनाम महाराय स्वास्त्र और परिवर करनाम महाराय स्वास्त्र और परिवर करनाम महाराय	Determination of Paralytic Shellfish Poison (PSP) in Molluscs				
Method No.	FSSAI 06.031:2023	Revision No. & Date	0.0		
Scope	parent compound saxitox	lve molluscs	in the analysis we		
Caution	should not be ingested	l should be calibrated on			
Principle	dispersive extraction using volume. The extract is certained 1 mL is pipetted to a puthrough amorphous polyn	om 2 g fish sample homong 18 mL 1% HAc without antrifuged to allow transferripolypropylene tube. The extense graphitized carbon SPE. The diluted extract is the	any further dilution ing of the supernata ract is then cleaned c cartridge and dilut		
Apparatus/ Instruments	 Hilic coloumn: HILIC-Z column (150mm × 2.1 mm × 2.7 μm) Chromatography System: Infinity 2 binary pump equipped with a thermostatically controlled autosampler and a column oven (set at 30°C). Detection system: triple quadrupole mass spectrometer was used for the detection 				
Materials and Reagents	 Certified reference toxin (STX) was obtained from National Council Canada (NRCC, Halifax, Nova Scotia, Canada) or source with same specification. Acetonitrile (HPLC and LCMS grade) (MeCN) LC-MS grade water Acetic acid (HAc) (99%) Ammonium formate (97%) Formic acid (97%) Ammonium acetate (99%) Hydrogen peroxide (99%) Periodic acid (99%) Methanol (LCMS/HPLC grade) 				
Preparation of Reagents	Formic acid	of 25% ammonium hydroxio			
		ls: candards using previously a ect to de-salting clean up.	analyzed PST negati		
		oon SPE cleaned extract in 3	mL of MeCN to crea		

				using six calibration standard	_
	dupl	S. No	erage the re	esponses and calculate subseques Calibration range (nmol/L)	uent slopes.
		1	C1	4.6-183.2	
		2	C2	1.4-55.0	
		3	dcGTX2	4.0-161.4	
		4	dcGTX3	1.2-47.8	
		5	GTX2	4.1-164.2	
		6	GTX3	1.7-69.6	
		7	GTX1	2.3-91.5	
		8	GTX4	0.7-28.8	
		9	GTX5	2.3-93.6	
		10	dcSTX	2.7-106.9	
		11	dcNEO	1.2-48.6	2
		12	STX	2.7-107	
			+		-
Sample Preparation		13	NEO	2.6-104.2 terials at -20°C until analysis.	
Method of analysis	in ru Afte into cent fats Take cent SPE clea Cone follo mL/ Elut µL sa an a Was the e 2 ml in a mL/ Dilu anal	anning cor centrification and protest this from the chief this from the chief the chie	old water. ugation (45 n 15 mL n (at same eins from t om the extr on, and subj 250 mg/3 n 3 mL 0.025 guide. o the level tract to the ate flow rat rtridge with waste, with eCN + 1% l olypropyler c eluent on a pL of post of g HILIC-MS e quantitativ	we ESI m/z transitions and coll	of the extracts ct to further y) to separate ices. carated during eCN + 1% HAC flow rate of 6 aste. Add 400 fthe frit, using to waste. yness, discard mL/min. Add lect the eluent flow rate of 3 cetonitrile and continued to the eluent flow rate of 3 aste.
	for u 2) Prep MeC 3) Asse dupl 4) Prep prev clear 5) Clear to cr	se with the lare the lare the licate. Do not the riously are the riously are 1 mL of reate the	the HILIC-Z analytical s .25% Hac. nearity usin solvent sta nalyzed PS extract usi matrix solv	column on the Agilent 6495. standards at six concentration of six calibration standard level and subjecting carbon SPE and dilute using	levels in 80% els analyzed ir andards using to de-salting 3 mL of MeCN
	-			esponses and calculate the subs	-

Chromatographic Gradient:
Column temperature: 30 °C
Flow rate: 2 ml/min

Chromatographic Gradient (%)			
Time (min)	A	В	
0	10	90	
0.5	10	90	
5.5	25	75	
6	50	50	
7.5	50	50	
8	10	90	
11	10	90	

MS Parameters:

Analyte	Polarity	1' MRM transition	2' MRM transition	Cone Voltage (V)	Collision Energy (eV)
1 omy		0554 4064	257.1>222.		
dcSTX	+ve	257.1>126.1	0	10	19; 22
dcNEO	+ve	273.1>126.1	273.1>225. 1	10	20; 18
STX	+ve	300.1>204.1	300.1>138. 0	10	23; 30
NEO	+ve	316.1>126.0	316.1>220. 1	10	26; 23
dcGTX3	+ve	353.1>255.1		10	18
GTX3	+ve		396.1>298. 1	10	17
GTX4	+ve	412.1>314.1		10	18
GTX5	+ve	380.1>300.1		10	16
C2	+ve	396.1>298.0		18	20
dcGTX2	-ve	351.1>164.0	351.1>333. 1 351.1>333.	10	30;17
dcGTX3	-ve		351.1>333. 1	10	17
GTX2	-ve	394.1>351.1	394.1>333. 1	10	16
GTX3	-ve	394.1>333.1		10	22
GTX1	-ve	410.1>367.1	410.1>349. 1	10	15;22
GTX4	-ve		410.1>367. 1	10	15
GTX5	-ve		378.1>122. 0	10	25
C1	-ve	474.1>122.0	474.1>351. 0	10	30;25
C2	-ve		474.1>122. 0	10	30

The concentration of each of the analytes can be calculated from the graph
using the equation:
y=mx+C (as obtained from the graph),
where,
y – Signal/Area given by the standards.
x – Known concentration of the standard used for calibration.
m – Slope of the curve
C – Intercept
The result is calculated based on the calibration curve and then multiplied by
the dilution factor (if dilution is conducted during preparation).
Karl J. Dean, Robert G. Hatfield and Andrew D. Turner (2021), "Performance
Characteristics of refined LC-FLD and HILIC-MS/MS methods
for the Determination of Paralytic Shellfish Toxins in Shrimp, Whelk and
Crab".
Scientific Panel on Methods of Sampling and Analysis

एफएसएसएसाई रिड्डा	Determination of	Okadaic Acid (DSP) and Azasp Molluscs	iracia (AZP) in
Basic Editory and Standards Authority of Police स्थानस्था और परिचार करन्याण मेहाराय Minorry of Houth and Farrey Welfaro			
Method No.	FSSAI 06.032:2023	Revision No. & Date	0.0
Scope	biotoxins [(direct qua Azaspiracid 1 (AZP or procedure was validat dinophysistoxin 1 (DTX	able to the determination of the ntitative determination of okace AZA 1). Assuming an equal red by using OA for the indirectly and dinophysistoxin 2 (DTX2) fication of AZA 2 & AZA 3 in valve molluscs	daic acid (OA) a response factor, t ct quantification]] & AZA 1 was us
	Frozen clam me		
Caution	and should not	used should be calibrated on	
		ts of recognized analytical grade	
Principle	methanol from homogonalyzed by liquid cludetection (LC-MS/MS) DTX1, free DTX2, AZA 1 OA group toxins, an alkaprior to LC-MS/MS analonalysis, extracts	the extraction of OA & AZA grounderized tissue. Extracts are then in the promatography with tandem of the in order to investigate the present, AZA 2 and AZA 3. To determine aline hydrolysis is necessary from the ysis with the aim of converting and the parent OA and/or DTX1 or are filtered and analyzed ation is performed by gradient elemanical enterties.	filtered and direct mass spectromet ence of free OA, for the total content in methanolic extra acylated esters. DTX2 toxins. Af d by LC-MS/N
Apparatus/	Analytical balan	ce, accuracy to the nearest 0.1 m	g
Instruments		/ Homogenizer	
	 Heat block or w Instruments for stainless steel s Volumetric flash Adjustable auto 	ater bath, at 76°C sample preparation, knives, spat eve, plastic jars s, 20 ml, 100 ml, 250 ml, 500 ml a matic pipettes and graduated cyl	and 1000 ml
	 Syringe or mem HPLC autosamp Syringe for filte Syringe or mem Analytical rever Examples for pl 		
	Examples for b	oth acidic conditions and alka Bridge C18, 50 mm (length) x 2.1	•

	Acquity UPLC® BEH C18, 50 mm (length) x 2.1 mm (diameter), 1.7
	μm particle size.
	X-Bridge C18, 150 mm (length) x 3 mm (diameter), 5 μm or 3.5 μm particle size.
	X-Bridge C18, 150 mm (length) x 2.0 mm (diameter), 3.5 μm particle
	size.
	NOTE: These are the columns that support chromatographic
	separation of the analytes. Each laboratory can decide the suitable
	column and optimize the gradient system accordingly.
	Liquid chromatograph, system able to analyze in gradient mode
	Mass spectrometer, equipped with an ESI interface and able to
	analyze in tandem MS/MS
Materials and	1) Water - Ultrapure
Reagents	2) Acetonitrile, HPLC grade or Hypergrade for LCMS
	3) Methanol, HPLC grade
	4) Formic acid (98-100% purity)
	5) Ammonium formate (≥99% purity)
	6) Hydrochloric acid (37% purity)
	7) Hydrochloric acid 2.5 M 8) Sodium hydroxide (≥99% purity)
	9) Sodium hydroxide (299% purity)
	10) Ammonia (25%)
	11) Ammonium hydrogen carbonate (bicarbonate; ≥98% purity)
	12) Ammonium hydroxide solution (>25 % or greater purity)
	13) Okadaic acid (CRM-OA-c).
	14) Azaspiracid 1 (CRM AZA1). Standard solution of azaspiracid 1 in
	methanol.
	15) Azaspiracid 2 (CRM AZA2). Standard solution of azaspiracid 2 in
	methanol.
	16) Azaspiracid 3 (CRM AZA3). Standard solution of azaspiracid 3 in
Preparation of	methanol 1) Hydrochloric acid 2.5 M:
Reagents	Add 20 ml hydrochloric acid to a 100 ml volumetric flask and make
Reagents	up to the mark with water. This solution is stored at room
	temperature and can be used for 3 months.
	2) Sodium Hydroxide 2.5 M:
	Dissolve 10 g sodium in 75 ml water in a 100 ml volumetric flask and
	made up to the mark with water. This solution is store at room
	temperature and can be used for 3 months.
	3) Okadaic acid (CRM-OA-c):
	Standard solution of okadaic acid in methanol
	4) Azaspiracid 1 (CRM AZA1):
	Standard solution of azaspiracid 1 in methanol.
	5) Azaspiracid 2 (CRM AZA2):
	Standard solution of azaspiracid 2 in methanol.
	6) Azaspiracid 3 (CRM AZA3):
	Standard solution of azaspiracid 3 in methanol
	7) Stock standard solution:
	• Ampoules containing OA toxins & AZA 1 used are supplied with a continued concentration (14.2 ug/m) for OA & 1.2
	with a certified concentration (14.3 μg/ml for OA & 1.24
	μg/ml for AZA 1).

	methan 8) Working stand • A certa diluted workin • These s freezer • A longe	nol to the 1000 ard solutions: ain volume of with methanog standard solutions can l (< -20°C) whe	the toxin stoll to the voluntions for the pe used for 1 not in use.	e standard is dilock standard so ock standard some to prepare a calibration curve week, being so if the stability Calibration standard	olution. olution is multitoxin re. tored in a
	15	985	(ng/ml) 3	Std 1	
	30	970	6	Std 2	
	50	950	10	Std 3	
	100	900	20	Std 4	
	150	850	30	Std 5	
	200	800	40	Std 6	
	 shellfish with fresh water. Open by cutting adductor. Rinse inside with fresh water to remove sand and foreign material. Remove meat from shell by separating adductor muscles and tissue connecting at hinge. Do not use heat or anesthetics before opening the shell. After removal from shellfish, drain tissues in a sieve to remove salt water. For representative sampling, at least 100-150 g of pooled tissue should be homogenized in a blender or homogenizer. Sub-samples from this homogenate can be taken immediately after blending, while still well mixed, or after mixing again. Sample Extraction: 				
	centrifu Add 9. via vort Centrifu transfe the extu of meth After of approx	age tube. O ml of 100% tex mixing for 3 uge at 2000 g of r the supernation caction of the relation tentrifugation 20°C), transfectand make	methanol and maxion and to a 20 mesidual tissued homogenized (at 2000 g or and combine).	d homogenize the mum speed lever 0 min at approxed lever 1 volumetric flampellet with another for 1 min. Thigher for 10 the the supernatar fact to 20 ml were the supernatar fact to 20 ml were defined as the supernatar fact to 20 ml were defined	he sample el 20°C and sk. Repeat cher 9.0 ml 0 min and nt with the
Method of analysis F	ree OA and AZA grou		veie.		
Method of analysis F		_			ann a d - C
				toxins is perfor	
	filtering	g an aliquot of	the methano	olic extract thro	ugh a dry

methanol-compatible 0.45 μm or 0.2 μm syringe filter and injecting between 5 μ l and 20 μ l, depending on sensitivity of instrument, onto LC-MS system.

Hydrolysis:

- In order to detect and quantify the total content of OA/DTX toxins an alkaline hydrolysis is required before LC-MS/MS analysis.
- In a test tube, add 313 µl of NaOH 2.5 M to 2.5 ml of methanolic extract, homogenize using a vortex mixer for 0.5 minutes and heat the mixture using a heating block or water bath set at 76 °C for 40 minutes.
- Cool to room temperature, neutralize with 313 μ l of HCl 2.5M and homogenize in vortex for 0.5 minutes.
- Filter this extract through a dry methanol-compatible 0.45 μm or 0.2 μm syringe filter and inject 5 μl -20 μl onto the LC column.
- Cleanup is to be used, if necessary, to eliminate matrix effects.
 Possible options: liquid-liquid partitioning, SPE, etc. If this approach is used, the recovery of this step must be individually evaluated and reported by the laboratory.

Chromatographic conditions:

(i)

	BDS- Hypersil C8, 50mm			
Column	(length) x 2mm (diameter),			
	3μ ра	rticle size	9	
Flow	0.2	ml/min		
Injection	5-10 μl (de	pending	on MS	
volume	sensitivity)			
Column				
temp	25	5-40 °C		
	Time	%A	%B	
	0	70	30	
Cwadiant	8	10	90	
Gradient	11	10	90	
	11.5	70	30	
	17	70	30	

(ii)

	X-Bridge C18, 50 mm (length)				
Column	x 2.1 mm (d	iameter),	2.5 μm		
	par	ticle size			
Flow	0.3	ml/min			
Injection	5-20 μl (de	epending	on MS		
volume	sen	sensitivity)			
Column					
temp		25 °C			
. 40	Time	%A	%B		
	0	90	10		
Considerate	4	20	80		
Gradient	6	20	80		
	6.5	90	10		
	9	90	10		

MS Parameters:

MS Parameters	OA & AZA Group
Curtain Gas (CUR)	20 psi
Collision Gas (CAD)	Medium
Voltage (IS)	4500 V
Temperature (TEM)	650 °C
Gas 1 (GS1)	40 psi
Gas 2 (GS2)	60psi

Fragmentation Conditions:

Comp ound	ESI	Q1	Q3	Mseg	DP (v)	EP (v)	CEP (v)	CE (v)	CXP (v)
OA	-ve	803.5	255. 0	125	120	-10	-28	-62	-2
OA	-ve	803.5	113. 0	125	- 120	-10	-28	-60	-2
DTX-2	-ve	803.5	255. 0	125	- 120	-10	-28	-62	-2
DTX-2	-ve	803.5	113. 0	125	- 120	-10	-28	-60	-2
DTX-1	-ve	817.5	255. 0	125	- 120	-10	-28	-62	-2
DTX-1	-ve	817.5	113. 0	125	- 120	-10	-28	-60	-2
AZA-1	+ve	842.5	824. 5	35	81	4.5	64	55	6
AZA-1	+ve	842.5	806. 5	35	81	4.5	64	55	6
AZA-2	+ve	856.5	838. 5	35	81	4.5	76*	55	8
AZA-2	+ve	856.5	820. 5	35	81	4.5	76*	55	8
AZA-3	+ve	828.5	810. 5	35	81	4.5	68*	55	6
AZA-3	+ve	828.5	792. 5	35	81	4.5	68*	55	6

Calculation with units of expression

The concentration of each of the analytes can be calculated from the graph using the equation:

y=mx+C (as obtained from the graph),

where,

- **y** Signal/Area given by the standards.
- **x** Known concentration of the standard used for calibration.
- **m** Slope of the curve
- C Intercept

The result is calculated based on the calibration curve and then multiplied by the dilution factor (if dilution is conducted during preparation).

Reference	LC-MS/MS	(EU-Harmonised	Standard	Operating	Procedure	for
	determination	on of Lipophilic mar	ine biotoxins	s in molluscs l	y LC-MS/MS)	
Approved by	Scientific Pa	nel on Methods of Sa	ampling and	Analysis		- 50

Determination of Domoic Acid (ASP) in Molluscs प्राथम वाप्राण प्राथम प्रमाण वाप्राण प्रमाण						
Method No.	FSSAI 06.033:2023	Revision No. & Date	0.0			
Scope	This method is applicable to Live and raw bivalve molluscs and Frozen clam meat as specified in Food Safety and Standards (Food Products Standards and Food Additives) Regulations, 2011.					
Caution	samples and extr	ze the test portion on the sar acts when not being handled acidic extracts slowly decor				
Principle	mins with 0.1M HCl. Mix supernatant is diluted, fil	Domoic acid is extracted from homogenized mussel tissue by boiling for 5 mins with 0.1M HCl. Mixture is cooled and centrifuged and an aliquot of the supernatant is diluted, filtered and analyzed by isocratic LC and UV detection at 242 nm with mobile phase of CH_3 - CN - H_2O acidified to pH ca 2.5.				
Apparatus/ Instruments	 a) Liquid Chromatograph: With injection valve, solvent delivery system, recording integrator, variable wavelength UV detector. b) LC column: Stainless steel, 15 cm x 4.6mm id, packed with reversed phase C18, 5μm material. Column brand does not affect analysis if CH₃CN concentration is adjusted in mobile phase. c) Membrane filters: Disposable, plastic-sealed mini-filters with Leur – Lok hub, 0.45 μm (3cm diameter), attached to 5ml glass or disposable plastic syringe. [Millex HV (Millipore corp.) meets these specifications.] d) Centrifuge: High speed, with timer. Capable of 3000 rpm using 100ml 					
Materials and Reagents	HydrochleMobile Ph	ile (CH₃CN): LC Grade oric acid (HCl): 0.1M nase cid standard solution: 1.09 n	g/ul			
Preparation of Reagents	1) Mobile Phas Deionized Wa 125 ml CH ₃ C Domoic Acid necessary to a under method 2) Domoic Acid	se: Add 2ml of 8.5% Aque ater and vortex mix & check to N, mix and degas. Perform placed Standard and adjust CH give Domoic Acid Retention of the condition. I Standard Solution: 1.09 N Refrigerate when not in	cous H ₃ PO ₄ to 873 ml to ensure pH is 2.4. Add preliminary analysis of a CN concentration as Time Ca 8min (K', Ca 6)			
Sample Preparation	 1) Clams, oysters an Thorough by cutting Rinse insi material. muscles a Do not us not cut or 		ve sand or other foreign by separating adductor e. e opening shell, and do this stage.			

	As soon as possible transfer meats to No. 10 sieve without
	layering, and let it drain for 5min.
	 Pick out the pieces of shell and discard drainings.
	• Grind in household- type grinder with 1/8 in- ¼ in. (3-6 mm)
	holes or in blender until homogenous.
	2) Scallops:
	 Separate edible portion (adductor muscle) and apply test to
	this portion alone. Drain and grind as has been done for
	Clams, Oysters and Mussels.
	3) Canned Shellfish:
	Prepare by blending
Method of analysis	1) Inject replicate 20 µl portions of domoic acid standard solution into
	LC system until peaks (measured as height or area) for three
	consecutive injections do not vary by more than 3%.
	2) Ensure baseline resolution of L- tryptophan from domoic acid; adjust
	mobile phase composition accordingly.
	3) Make alternate, duplicate injections of test solution from D and
	standards.
	4) Determine recoveries of domoic acid at 20 μg/g level.
Calculation with units	Calculate results as follows:
of expression	Domoic acid, $\mu g/g = \frac{R}{R'} \times \frac{W'}{W}$
	Where,
	R: Average peak heights or areas of test solutions
	R': Average peak heights or areas of standards
	W: Weights injected of test portion (mg)
	W': Weights injected of Standard (ng)
Reference	JAOAC 49 (1999), Official method 991.26, p. 91
Approved by	Scientific Panel on Methods of Sampling and Analysis

प्रकृपस्यसम्बद्धाः 1550वाः अवस्य स्वा वृद्धाः के काव वार्णक्यः कावस्य से पाविक सन्याम मात्राच्यः अकारम् से पाविक सन्याम मात्राच्यः अकारम् वेद्या पाविक सन्याम मात्राच्यः	Determination of Brevetoxins in Molluscs					
Method No.	FSSAI 06.034:2023	Revision No. & Date	0.0			
Scope	marine biotoxins product Kareniabrevis (formerly <i>Ptychodiscusbrevis</i>). The filter feeding shellfish ar	soning (NSP) toxins (i.e. brevetox ced by the marine dinoflagellate, known as <i>Gymnodiniumbreve</i> and phytoplanktonic toxins can be and other seafood. Toxins included d PbTx-3;. This method is specifications.	d accumulated in in the analysis			
	Live and raw bivFrozen clammea					
Caution	 All standards should be handled carefully, avoiding contact with eyes and should not be ingested. All instruments used should be calibrated on a routine basis for sensitivity and accuracy. 					
Principle	3) Prepare matrix matched calibration standards freshly before use. An analytical method using LC-MS/MS for the determination of neurotoxic shellfish poisoning (NSP) toxins (brevetoxins) in shellfish using solvent extraction, SPE clean-up, chromatographic separation and mass spectrometric detection [multiple reaction monitoring (MRM)].					
Apparatus/						
Instruments	 SPE cartridge - Strata-X (33 mm, 3 mL, 60 mg) HPLC - Nanospace SI-2 HPLC system Column specifications - XB-C18 100 Å column (100mm 2.1mm i. d., 2.6 mm) which was maintained at 35 °C. Mass spectrometric system - Triple Quad 4500 LC-MS/MS system equipped with an electrospray ionization (ESI) source. 					
Materials and						
Reagents	 Standard of PbTx-1 Standards of PbTx-2 Acetonitrile (HPLCgrad) Methanol (HPLCgrad) Formicacid (_98%) Water (LCMS Grade) 	rade). de).				
Preparation of	Calibration:	,				
Reagents	solutions of 10,000 a 2) Prepare the mixed s individual stock solu		oTx-3, respectively. riate volumes of the			
	toxins. Store the sto darkness. 4) Prepare matrix mate amounts of mixed st which had not been	f the mixed stock solution is 100 ock solutions and mixed stock sched calibration standards by the tock solution to appropriate volucontaminated with Brevetoxins. matrix extracts in the same w	solution at -20°C in e addition of known nmes of the extract			
Sample Preparation	1) Poole the edible pountil analysis.	rtions, homogenize and store in	the freezer (-20°C			

- 2) Weigh an aliquot of 5g of homogenized sample into a 50 mL graduated polyethylene tube and extract with 5mL of 80% methanol. Vortex the solution for 1 min.
- 3) After extraction, heat the suspension in a water bath at 60°C for 20 min and centrifuge the hot solution at 3000 rpm for 20 min.
- 4) Decant the supernatant into a 50 mL tube and store in the freezer (-20°C) for 1 h. Filter the supernatant through a 0.45 mm nylon syringe filter.
- 5) The filtered crude extract (about 4.5 mL) is used for the solid phase extraction (SPE) clean-up.

Solid phase extraction:

- 1) Purify the crude extract on a SPE cartridge prior to LC-MS/MS analysis.
- 2) Condition the SPE cartridge previously with 3mL of 25% methanol.
- 3) Pass 3mL of crude extract through the SPE cartridge and then, wash the cartridge with 4mL of 25% methanol.
- 4) Elute the components in the cartridge using 3mL of acetonitrile.
- 5) The resulting solution is passed through a 0.22 mm nylon syringe filter for LC-MS/MS analysis.

Method of analysis

Perform the Chromatographic analysis using the following conditions.

1) Column Conditions:

• Injection volume: 10ml

• Column temperature: 35°C

Mobile phase A: 0.1% formic acid/water, v/v

• Mobile phase B: 100% acetonitrile

• Flow rate: 200 mL/min

2) Gradient:

Time	%A	%B
(min)		
0.0	60	40
2.0	10	90
5.0	10	90
6.0	40	60
6.1	60	40
10.0	60	40

3) Optimized MS/MS conditions:

• ESI: +ve, multiple ion monitoring (MRM)

• Ion spray (IS) voltage: 5500 V

• Curtain gas: 20 psi

Nebulizer gas (GS1): 50 psi

• Heating gas (GS2): 50 psi

Source temperature: 450 °C

Nebulizer and collision gas: Nitrogen

4) MRM transitions:

Toxins	M.W	Precursor	Product	DP	EP	CP	CXP
	(g/mol	Ion (m/z)	Ion(m/z)	(V)	(V)	(V)	(V)
)						
PbTx-1	866	[M+H]+867	849*	140	10	21	20
			831	140	10	25	18
PbTx-2	894	[M+H]+895	877*	161	10	23	10
			859	161	10	31	10
PbTx-3	896	[M+H]+897	725*	130	10	31	6

		879	130	10	22	6	
	*denotes the Quantification ion.						
Calculation with units	Calculate the concentration of each analyte from the graph using the						
of expression	equation:						
	y=mx+C (as obtained from	n the graph),					
	where,						
	y - Signal/Area given by the stand	dards.					
	\mathbf{x} – Known concentration of the st	andard used	for calib	ration.			
	m – Slope of the curve						
	C – Intercept						
	Calculate the result based on the calibration curve and then multiply by the						
	dilution factor (if dilution is conducted during preparation).						
Reference	Choonshik Shin, Jeong-Yun Hwang, Jin-Hong Yoon, Sheen-Hee Kim, Gil-Jin						
	Kang, "Simultaneous determination of neurotoxic shellfish toxins						
	(brevetoxins) in commercial shellfish by liquid chromatography tandem						
	mass spectrometry, Food Control, Vol 91, 2018, pg 365-371, ISN 0956-7135						
Approved by	Scientific Panel on Methods of Sar	npling and Ai	nalysis				
1							

TENT OF THE PROPERTY OF THE PR	Determination of Polyaromatic Hydrocarbons in Fish & Fish Products
Method No.	FSSAI 06.035:2023 Revision No. & Date 0.0
Scope	Applicable for the determination of the PAHs (acenaphthylene, acenaphthene, anthracene, benz[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[g,h,i]perylene, benzo[k]fluoroanthene, chrysene, dibenz[a,h]anthracene, fluoranthene, fluorene, indeno [1,2,3-cd] pyrene, naphthalene, phenanthrene and pyrene) in: • Live and raw bivalve molluscs • Frozen clammeat • Raw/ chilled/ frozen finfish The maximum residue limit has been specified only for
	benzopyrene in:
	Smoked fishery products
Caution	Poly aromatic hydrocarbons metabolizes through photo oxidation. Hence the standard solution and the samples should be protected from direct exposure to light.
Principle	Method uses a single-step ethyl acetate extraction and salting out liquid-liquid partitioning from water in the sample with Magnesium sulphate (MgSO ₄) and Sodium chloride (NaCl). Cleanup is done to remove coextracted fat with Silica SPE cartridge. The cleaned extracts are then analyzed by GC-MS/MS in multiple reaction monitoring method (MRM).
Apparatus/Instruments	 Polypropylene centrifuge tubes - 50ml Polypropylene centrifuge tubes - 15ml Vortex Centrifuge Gas chromatograph - tandem mass spectrometer
Materials and Reagents	 Ethyl acetate Magnesium Sulphate (MgSO₄, analytical grade) Sodium Chloride (NaCl, analytical grade) Dichloromethane Iso-octane Hexane
Preparation of	of Heliane
Reagents	1) Silica gel SPE column- containing 1g silica gel. Any commercially available silica gel SPE cartridge can be used as long as it provides adequate fat cleanup and meets requirements for low background contamination specified by laboratory qualification requirements. The concentration of all analytes in the reagents had to be below the concentration in the lowest calibration level standard (equivalent to 5ng/g naphthalene in the sample) are still
	acceptable if the source of contamination could be eliminated. Silica gel SPE columns can be prepared in-house using the following procedure. Activate silica by heating at 180 °C for 5h and deactivate by adding 5% deionized water, shaking for 3h, store in a desiccator for 16h before use(silica gel prepared and stored as directed can be used for 14 days). Place a piece of deactivated

(Silica gel 60, 0. it with 0.2g muf 2) Anhydrous ma heated (muffled before use (MgS used for 1 mont mixture of 2g s	063-0.2mm, 70-230 mes fled anhydrous Na ₂ SO ₄ . I gnesium sulphate (M I) at 600C for 7h, and the GO ₄ prepared and stored h). Note: A pre weighed	dd 1g activated silica gel sh or equivalent) and top gSO ₄) - ≥99.0% powder nen store in a desiccator as recommended can be (commercially available) g anhydrous magnesium
raction and cleanu		
1) Take 10 g homo ml distilled wate 2) Add 10 ml of eth 3) Add 6 g of MgSO 4000 rpm for 5 d) Collect the supe 5) Collect 2 ml sue evaporate in a n 6) Reconstitute the cartridge previous	genized tissue in a 50 mer to it and vortex for 1 ments and vortex for 1 ments are and vortex for 1 ments. O4, 2 g of NaCl and vortex min. In at the warm of the second	r 1 min. x for 3 min. Centrifuge at cool at -20°C for 30 min. sooctane as keeper and
8) Add 2 ml of etl evaporate in nit	rtridge with 10 ml Hexa	isooctane as keeper and n.
10) Filter through P	TFE syringe filter and vi	al for analysis.
ection and estimation conditions: Injection volum injector) GC Oven Progra	e: 5 μl (Large volu	me, preferably in a PTV
te(0c/min)	Temperature(0c)	Hold Time(min)
0	60.0	2.00
25.0	150.0	0.00
3.0	200.0	0.00
8.0	290.0	4.00
	1	1.00
Injection mode:Carrier mode :Inlet Temperature:	PTV - Large volume Constant flow 50°C	
The state of the s	Carrier mode :Inlet	 Injection mode: PTV - Large volume Carrier mode : Constant flow Inlet Temperature: 50°C

Split flow : 50.0ml/min Split less time: 2.00 min

Carrier mode: Programmed pressure

Rate (kPa/min)	Pressure (kPa)	Hold Time (min)
	110.00	2.00

5.00	130.00	35.00

PTV PROGRAMME

	Rate (°C/s)	Temperature(°C)	Time (min)	Flow (ml/min)
Injection			0.01	20.0
Evap.	14.5	90	0.08	30.0
Transfer	5.00	300	25.00	
Cleaning	14.5	330	10.00	80.0

MRM Conditions:

Name	Parent	Product Mass	Collision
	ion	=	Energy
Acenaphthalene	151.9	125.8	24
Acenaphthalene	151.9	150	28
Acenaphthene	152.8	152.2	18
Acenaphthene	154.1	153.1	16
Fluorene	165	163	30
Fluorene	166.1	165.1	16
Phenanthrene	178	150.9	28
Phenanthrene	178	151.6	22
Anthracene	178	151	32
Anthracene	178	151.7	20
Fluoranthene	202	200	25
Fluoranthene	202	202	20
Pyrene	202.1	200	36
Pyrene	203.3	201	36
Benz(a)anthracene	225.9	224.1	34
Benz(a)anthracene	228	226	28
Chrysene	225.9	200	28
Chrysene	229.2	227.1	30
Benzo(b)fluoranthene	126.1	113	12
Benzo(b)fluoranthene	252.1	250.1	32
Benzo(k)fluoranthene	250	248	32
Benzo(k)fluoranthene	252.1	250	34
Benzo(a)pyrene	250	248	36
Benzo(a)pyrene	252.1	250	34
Indeno(1,2,3cd)pyrene	276.2	276.2	10
Indeno(1,2,3cd)pyrene	277.2	275.1	35
Dibenzo(a,h)anthracene	278.2	276.1	30
Dibenzo(a,h)anthracene	278.2	278.2	10
Benzo(g,h,i)perylene	276.1	274.1	38
Benzo(g,h,i)perylene	276.1	274.6	18

Calculation with units of expression

The analyte concentrations in the final extract (c_{PAH} , $\mu g/L$) are determined from the equation:

$$\mathbf{c}_{\mathrm{PAH}} = \frac{\left[\frac{S_{PAH}}{S_{13C-\mathrm{PAH}}}\right] - b}{a}$$

Where,

	<i>a</i> is the slope of the calibration curve
	b is the y- intercept.
	The concentration of PAHs in the sample (C, μ g/kg) is then calculated:
	$C = \frac{C_{PAH}}{C_{13C-PAH}} \times \frac{X_{13C-PAH}}{m}$
	Where,
	C _{13C-PAH} is the concentration of the corresponding ¹³ C- PAH in calibration
	standard solutions (in μg/L); X ¹³ C-PAH .
	A calibration curve was obtained and the curve was extrapolated to find
	the unknown concentrations
Reference	[1] J. AOAC Int. 81 , 1011(1998)
	[2] J. AOAC <i>Int.</i> 83 , 933(2000)
	[3] AOAC 2014.08: 2016
	[4] AOAC 2014.08: 2019
Approved by	Scientific Panel on Methods of Sampling and Analysis

Up UHUHUME Section and grant site contractions begins and grant site contractions to the contraction of the contraction of the contraction to the contraction of the contraction of the contraction to the contraction of the	PCB101, PCB138, PCB153 and PCB180) in Fish & Fish Production and the CB180 and PCB180 in Fish & Fish Production of the CB180 and PCB180 in Fish & Fish Production of the CB180 in Fish Production of the C				
Method No.	FSSAI 09.036:2021	Revision No. & Date	0.0		
Scope	 The method is applicable Raw/ chilled/ free Live and raw biv Frozen clam mea Smoked fishery p 	ozen finfish valve molluscs at products			
Caution	handled with safet associated with it. 2) All the injection volu for the stable workir 3) Routine calibrations	extremely sensitive instrumery and precaution, following the sand concentration limits and of the instrument. Is along with checkups are we detection and analysis of the same and sand analysis of the sand a	ng all the protocols are to be maintained to be performed for		
Principle	a single step buffered accliquid partitioning from acetate. Cleanup is done components with a comb	asy, cheap, effective, rugged a etonitrile (MeCN) extraction an water in the sample with eto remove organic acids, explaination of primary secondary. The extracts are then em mass spectrometry.	and salting out liquid- MgSO4 and Sodium cess water, and other y amine Z-Sep Florisil,		
Apparatus/ Instruments	 Polypropylene centr Polypropylene centr Vortex Centrifuge Gas Chromatograph 				
Materials and Reagents	1) Acetic acid 2) Anhydrous Magnesiu 3) Sodium Acetate (CH3 4) Acetonitrile (HPLC g 5) C ₁₈ 6) Z- Sep+ 7) Anhydrous Calcium 8) Ethyl acetate	um Sulphate (MgSO4) 3COONa) grade)			
Preparation of Reagents	Prepare standards of PC PCB180) for calibration in ng/ml.	Bs (PCB28, PCB52, PCB101, in a range of 5ppb, 10ppb, 20 epared in these same concent	ppb, 40ppb, 80ppb all		
Sample Preparation	freezer until further 2) Within three days of 3) Analysis to be done if 4) Take 5 g of homogen	receiving the sample.	uge tube.		

- 6) Add 15 ml of Acetonitrile (1% of acetic acid) and Vortex for 1 min.
- 7) Add 6 g of MgSO4, 2 g of sodium acetate and vortex for 3 min
- 8) Centrifuge at 4000 rpm for 5 min.
- 9) The collected supernatant is kept at -20 °C for 30 min.
- 10) Take 1 ml of cooled acetonitrile supernatant from this and add 150 mg CaCl₂, vortex for 3 min and centrifuge at 10000 rpm for 10 min.
- 11) Take 1.5 ml of supernatant and add to another Eppendorf tube containing 50 mg Z-Sep, 150mg C₁₈, 150 mg CaCl₂ and 150 mg MgSO₄.
- 12) Vortex for 1 min, followed by centrifuge at 10000 rpm for 10 min.
- 13) Collect 1 ml of supernatant and evaporate using Nitrogen evaporator after adding 100 µl toluene.
- 14) Filter 1 ml with PTFE syringe filter and vial for GC- MS/MS analysis.

Method of analysis

Detection and estimation is done by GC- MS/MS:

- 1) Inject suitable aliquots into a gas chromatograph operated normally. Measure peaks (height area). If necessary, dilute sample to give residue concentration ca that of standard solution.
- 2) Inject aliquot of PCB standard solution (in same solvent as extract) and again measure peaks.

GC conditions:

Injection volume: 5 μl ((Large volume, preferably in a PTV injector)

GC Oven Programs

Rate(°C/min)	Temperature(°C)	Hold Time(min)
0	60.0	2.00
25.0	150.0	0.00
3.0	200.0	0.00
8.0	290.0	4.00
8.0	310.0	1.00

Injection mode: PTV - Large volume

Carrier mode: Constant flow

Inlet

Temperature: 50°C

Split flow 50.0ml/min

Split less time: 2.00 min

Carrier mode: Programmed pressure

Rate (kPa/min)	Pressure (kPa)	Hold Time (min)
	110.00	2.00
5.00	130.00	35.00

PTV PROGRAMME

	Rate	Temperatu	Time (min)	Flow
	(°C/s)	re(°C)		(ml/m
				in)
Injection			0.01	20.0
Evap.	14.5	90	0.08	30.0
Transfer	5.00	300	25.00	
Cleaning	14.5	330	10.00	80.0

MRM Conditions:

Name	Parent	Product Mass	Collision
	ion		Energy
PCB 101	254	184	30
PCB 101	325.9	254	20
PCB 101	325.9	255.9	25
PCB 138	360	287.9	25
PCB 138	360	289.8	25
PCB 138	360	324.9	10
PCB 153	357.84	287.88	25
PCB 153	359.9	289.7	30
PCB 153	361.9	289.9	35
PCB 180	323.9	253.8	30
PCB 180	391.81	321.84	25
PCB 180	393.9	323.8	30
PCB 28	256	150.1	50
PCB 28	256	151.1	25
PCB 28	256	186	40
PCB 52	292	220	25
PCB 52	292	257	25
PCB 52	292	222	10

Calculation with units of expression

Stock: PCB mixture (PCB28, PCB52, PCB101, PCB138, PCB153 and PCB180) $100 \, \mu g/ml$.

Matrix based calibration standards: 2, 4, 8, 16, 32, and 64 ng/ml.

Each residue, ppm (
$$\mu g/ml$$
) = $\frac{C_S \times A \times V_S \times V_D}{V_E}$

Where,

 C_s = Concentration of standard(μ g/ml)

A = peak size of analyte

 V_s = Volume of standard

V_E= Volume of extract

 V_D = Dilution volume/ 1.0g of test portion

Reference	AOAC -2007.01: 2016
Approved by	Scientific Panel on Methods of Sampling and Analysis

प्रभूपसंप्रसंप्रसं इड्डा अववंत्र साम कृत्या और त्यान आगण्या सामान और परिवाद सम्हाम सामान अस्मान और परिवाद सम्हाम सामान	Determination of Methyl Mercury in Fish & Fish Products		
Method No.	FSSAI 06.037:2023 Revision No. & Date 0.0		
Scope	This method is applicable to:		
	All Fish & Fish Products		
Caution	 5) Methylmercury in extraction solution decomposes over time. To ensure accurate quantification of methylmercury, extracts must be analyzed within 8 h of preparation. 6) To assist homogenization of the analytical sample, reagent water ≤20% of the mass of seafood may be added, if its addition provides a more visually homogenous and easier to-manipulate material. If reagent water is added to assist homogenization, record to 4 significant figures the weights of edible portion and reagent water that are combined to prepare the analytical sample and apply mass correction factor (MCF) in calculation of concentration of analyte in analytical portion. Reserve a portion of reagent water used for homogenization to prepare method blanks. 7) Baseline resolution between inorganic and methylmercury peaks should be verified and that peaks are not tailing excessively before start of analysis. Verify that peak area standard deviation is less than 5%. 		
	8) Absence of instrument carryover should be verified.		
Principle	This method describes procedures for analysis of methyl mercury and total		
	chromatography (HPLC) and inductively couple plasma-mas spectrometry (ICP-MS). Total mercury in this method is calculated as the sum of inorganic and methylmercury determined in analytical solution. Other matrices may be analyzed by these procedures if performance is verified in the matrix of interest, at the concentration levels of interest.		
Apparatus/	7) Inductively coupled plasma-mass spectrometer—Capable of		
Instruments	 measuring mass-to-charge (m/z) ratio 202 in time resolve (chromatographic) mode. Equipped with Mist nebulizer, and quart Scott-type, double-pass spray chamber maintained at 2 °C. Instrumer should electronically interface with or can be configured to remote star by standard HPLC instruments for integrated operation. HPLC-ICPM of any vendor with equivalent feature is suitable for use. 8) High performance liquid chromatograph 9) HPLC analytical column— C-18, 250 x 4.6 mm, 5 μm particle size of equivalent. 10) Glass vials for extracting analytical samples—Amber, borosilicate glas vials, 60 mL capacity, with screw caps. 11) Heated water bath—Capable of temperature control with sufficient water and thermal capacity to allow immersion of extraction vials to cap level and maintain water temperature at 60 ± 4 °C for 120 minute 12) Syringe for filtering extracts—Disposable, general use and non-sterile 13) Syringe filters for filtering extracts—Disposable, 0.45 μπ 		
	polypropylene membrane with polypropylene housing.		
Materials and Reagents	 5) Reagent water—Water that meets specifications for Type I water 6) Methylmercury (II) chloride—CH₃HgCl crystals, purity ≥ 95% 7) Mercury (II) chloride—HgCl₂ crystals, ACS grade 		

- 8) L-cysteine hydrochloride monohydrate (L-cysteine.HCl.H₂0)—Purity > 98.5%
- 9) L-cysteine (free base)—Purity ≥ 99.8%.
- 10) Extraction solution, [aqueous 1% (w/v)]
- 11) Cysteine solution [aqueous 10% (w/v)]
- 12) Mobile phase, aqueous 0.1% (w/v)
- 13) Methylmercury stock solution.
- 14) Inorganic Hg stock solution
- 15) Multi-analyte intermediate solution
- 16) Multi-analyte working standard solution.
- 17) Check solution
- 18) Independent check solution (ICS)

Preparation of Reagents

- 3) Extraction solution, aqueous 1% (w/v) L-cysteine.HCl.H₂O—Dissolve 10 ± 0.1 g L-cysteine.HCl.H₂O crystals in 1000 ± 10 mL reagent water.
- 4) Cysteine solution (aqueous, 10%) (for preparation of standard solutions), (w/v):

Dissolve 5 \pm 0.05 g L-cysteine.HCl.H2O crystals in 50 \pm 0.5 mL reagent water

- 5) Mobile phase [aqueous 0.1% (w/v)]:
 - Dissolve 0.5 \pm 0.01 g L-cysteine and 0.5 \pm 0.01 g L-cysteine.HCl.H₂O in 500 \pm 5 mL reagent water.
- 6) Methylmercury stock solution, [(CH₃HgCl in H₂O that may contain up to 20% (v/v) methanol), (Hg=1000 mg/L)]:

Tare 100-mL volumetric flask on analytical balance in chemical fume hood. Weigh 0.1252 g CH₃HgCl (FW=251.08) in flask with stopper in place. Add \leq 20 mL methanol and swirl stoppered flask to dissolve CH₃HgCl. Dilute to 100.0 mL with reagent water. Discard solution in which inorganic Hg is > 3% of the theoretical methylmercury concentration.

7) Inorganic Hg stock solution [HgCl₂ in 0.1% (v/v) HCl, Hg = 2000 mg/L]:

Tare 50-mL polypropylene centrifuge tube. Weigh 0.1354 g HgCl2 (M.W = 271.50) in tube. Add 5.0 \pm 0.1 mL 1% (v/v) HCl and swirl to dissolve. Dilute to 50.0 \pm 0.5 mL with reagent water.

8) Multi-analyte intermediate solution, Hg due to $CH_3HgCl=1000$ $\mu g/L$ and Hg due to $HgCl_2=1000$ $\mu g/L$ in 0.02% (w/v) L cysteine.HCl.H₂O:

Mix approximately 40 mL reagent water and 0.1 mL 10% (w/v) L-cysteine.HCl.H $_2$ O in 50-mL polypropylene tube. Add 50.0 μ L methylmercury stock solution and 25.0 μ L inorganic Hg stock solution. Dilute to 50.0 \pm 0.5 mL with reagent water.

9) Multi-analyte working standard solution, [Hg due to $CH_3HgCl = 1 \mu g/L$ and $Cl_2 = 1 \mu g/L$ in 1% (w/v) L-cysteine.HCl.H₂O]: Mix approximately 40 mL reagent water and 5.0 ± 0.05 mL 10% (w/v) L-cysteine.HCl.H₂O in 50-mL polypropylene tube. Add $50.0 \mu L$ multi-analyte intermediate solution. Dilute to 50.0 ± 0.5 mL with reagent water. Mix and immediately transfer a portion to glass HPLC autosampler vial(s) for storage before use.

10) Check solution:

Use multi-analyte working standard solution for the check solution.

11) Independent check solution (ICS):

Prepare independent inorganic and methylmercury stock solutions, and independent multi-analyte intermediate and working standard solutions according to steps (4) – (7) from a different starting material than that used to prepare the primary stock solutions. Use of a commercial source material with a different lot number is acceptable, but a source material from a different manufacturer is preferred.

Sample Preparation

- 4) Weigh analytical portion into 60-mL amber glass extraction vial and determine mass of analytical portion. Generally, weigh 0.5 ± 0.1 g edible portion of fish and fish product. Use 0.2 ± 0.01 g for reference materials.
- 5) Add 50.0 ± 0.5 mL extraction solution (aqueous 1% (w/v) Lcysteine.HCl.H₂O) to extraction vials, cap tightly, and shake vigorously by hand.
- 6) Heat extract vials for 120 ± 5 min in water bath at 60 ± 4 °C. Shake each vial vigorously by hand after 60 minutes of heating and again after 120 minutes of heating.
- 7) Remove extraction vials from water bath and allow cooling to room temperature.
- 8) Filter a portion of extract through 0.45 µm filter directly into HPLC auto sampler vial.

Method of analysis

HPLC column: 5μ C18, 100Å, 250×4.60 mm

HPLC conditions:

Inlet				
Mobile Phase		0.1% L-Cysteine mixture		
Flow Rate (mL/min)		1.5		
Flow type		Isocratic		
Injection Volume (μL)		20		
Run time (mins)		6.6		
Retentio	Inorganic	2 min		
n time	Hg			
(min.	Methyl	3.96 min		
approx.)	Hg			

Instrument: ICP-MS Mass: 201.9706 (Hg)

ICP-MS Conditions:

Condition	Setting
R F Power (W)	1550
Plasma Gas Flow Rate (L/Min)	15
Auxiliary Gas flow rate (L/min)	0.9

Nebulizer Gas Flow Rate (L/min)	1.2
Sampling Depth (mm)	8
Peristaltic Pump Speed (rps)	0.2
Spray Chamber Temperature (°C)	2
Isotope (mass-to-charge ratio)	202
Integration time (sec/point)	1
Total acquisition time (sec)	300
Reaction/ collision cell mode	OFF
Dwell time (s)	0.1
Tolerance	10.0

- 1. Tune the instrument using the above-mentioned parameters and condition using several water & solvent blanks.
- 2. Plot a standard curve in the concentration range 1, 2, 5, 10, 20 and 40 µg/kg using the working standard solution prepared previously.

Note: Any vendor instrument can be used and instrument specific parameters have to be optimized by the implementing lab.

Calculation with units of expression

Calculation of Response factor of analyte, RF (cps-s/µg/L)

$$RF = \frac{A_{std-ave} - A_{es-ave}}{C_{std}}$$

Where,

A std-ave = average peak area of n > 2 injections of standard solution(s) (cps-

s). A $_{\text{es-ave}}$ = average peak area of n > 2 injections of extraction solution (cps-

s) (0 if no peak is detected).

 C_{std} = analyte concentration (μ g/L) in standard solution(s).

Calculation of concentration of analyte (inorganic mercury or methyl mercury) in analytical solution, S ($\mu g/L$):

$$S = \frac{A_{as} - A_{es-ave}}{RF}$$

Where,

A_{as} = peak area of analyte in analytical solution (cps-s).

 A_{es-ave} = average peak area of analyte in extraction solution (cps-s) (0 if no peak is detected).

RF = response factor of analyte (cps-s per μ g/L).

Calculation of concentration of total Hg in analytical solution, S_T ($\mu g/L$):

$$S_T = S_{inorg} + S_{methyl}$$

Where,

 S_{inorg} = concentration of inorganic Hg in analytical solution (μ g/L).

 S_{methyl} = concentration of methyl Hg in analytical solution (μ g/L).

Calculation of the concentration (mass fraction) of analyte in the analytical portion according to the formula:

Concentration
$$(\mu g/kg) = [(S_T \times DF) - MBK_L] \times \frac{V}{m \times MCF}$$

	Where,
	S_T = concentration of analyte (S or total Hg, ST) in analytical solution (or
	diluted analytical solution) (µg/L).
	MBK_L = laboratory method blanks (MBK) (μ g/L). Average of two method blanks.
	V = volume (L) of analytical solution (0.050 L).
	m = mass of analytical portion (kg).
	DF = dilution factor (1 if analytical solution not diluted).
	MCF = mass correction factor (1 if water or other solvent not added to aid homogenization).
	Round calculated concentration to at most 3 significant figures
	Concentration may be converted to other convenient units (e.g., mg/kg
	ng/kg).
Reference	[1] ASTM International (2006) ASTM D 1193-06, "Standard Specification
	for Reagent Water".
	[2] Hight, S. C., and Cheng, J. (2006) Determination of Methylmercury and
	Estimation of Total Mercury in Seafood Using High Performance Liquid
	Chromatography (HPLC) and Inductively Coupled Plasma-Mass
	Spectrometry (ICP-MS): Method Development and Validation, Anal. Chim
	Acta 567, 160-172.
	[3] Cheng, J., and Hight, S. C. (2008) USFDA Elemental Analysis Manual:
	Food and related products: High Performance Liquid Chromatographic-
	Inductively Coupled Plasma-Mass Spectrometric Determination of
	Methylmercury and Total Mercury in Seafood.
Approved by	Scientific Panel on Methods of Sampling and Analysis

Fish Products to which the methods are specified are mentioned here.

- 2.6.1 Frozen shrimp
- 2.6.4 Frozen finfish
- 2.6.5 Frozen Fish Fillets
- 2.6.8 Canned Fishery Products
 - 2.6.4.1 Finfish (sardine and other clupeoids, tuna and bonito, Mackerel, Seer fish, Pomfret)
 - 2.6.4.2 Crustacean (Shrimp/Prawn, Crab)
 - 2.6.4.3 Molluscs (Mussels, Squid)
- 2.6.9 Frozen Cephalopods
- 2.6.10 Smoked Fish Products
- 2.6.11 Ready -to-Eat Finfish or Shell Fish Curry in Retortable Pouches
- 2.6.12 Sardine Oil
- 2.6.13 Edible Fish Powder
- 2.6.14 Fish Pickles
- 2.6.15 Frozen Minced Fish Meat
- 2.6.16 Freeze Dried Shrimp/Prawns
- 2.6.17 Frozen Clam Meat

RAPID ANALYTICAL FOOD TESTING (RAFT) KIT/ EQUIPMENT

Alternate Rapid kits/equipments may be used to get quick results for screening and surveillance purposes, provided the kit/equipment is approved by FSSAI. Details of the rapid food testing kit/equipment approved by FSSAI are available at https://www.fssai.gov.in/cms/raft.php.

GOVERNMENT OF INDIA

Connect with FSSAI

FSSAI

@fssaiindia

www.fssai.gov.in

FSSAI

sp-sampling@fssai.gov.in

FDA Bhawan, Kotla Road, New Delhi-110002

